Solveeit Logo

Question

Question: The number $(2 + \sqrt{3})^6$ of can be expressed in the form $k + \sqrt{k^2 - 1}$ where $k$ is a po...

The number (2+3)6(2 + \sqrt{3})^6 of can be expressed in the form k+k21k + \sqrt{k^2 - 1} where kk is a positive integer, then kk = (where [.] denotes greatest integer function)

Answer

1351

Explanation

Solution

To express (2+3)6(2 + \sqrt{3})^6 in the form k+k21k + \sqrt{k^2 - 1}, we can proceed as follows:

  1. Expand using the Binomial Theorem:

    Let x=(2+3)6x = (2 + \sqrt{3})^6. We consider also y=(23)6y = (2 - \sqrt{3})^6.

  2. Compute x+yx + y:

    Using the binomial expansion formula for (a+b)n+(ab)n=2[(n0)an+(n2)an2b2+(n4)an4b4+](a+b)^n + (a-b)^n = 2[\binom{n}{0}a^n + \binom{n}{2}a^{n-2}b^2 + \binom{n}{4}a^{n-4}b^4 + \dots]:

    x+y=(2+3)6+(23)6=2[(60)26+(62)24(3)2+(64)22(3)4+(66)(3)6]x + y = (2 + \sqrt{3})^6 + (2 - \sqrt{3})^6 = 2 \left[ \binom{6}{0}2^6 + \binom{6}{2}2^4(\sqrt{3})^2 + \binom{6}{4}2^2(\sqrt{3})^4 + \binom{6}{6}(\sqrt{3})^6 \right]

    x+y=2[164+15163+1549+127]=2[64+720+540+27]=2[1351]=2702x + y = 2 \left[ 1 \cdot 64 + 15 \cdot 16 \cdot 3 + 15 \cdot 4 \cdot 9 + 1 \cdot 27 \right] = 2[64 + 720 + 540 + 27] = 2[1351] = 2702

  3. Compute xyx - y:

    Using the binomial expansion formula for (a+b)n(ab)n=2[(n1)an1b+(n3)an3b3+(n5)an5b5+](a+b)^n - (a-b)^n = 2[\binom{n}{1}a^{n-1}b + \binom{n}{3}a^{n-3}b^3 + \binom{n}{5}a^{n-5}b^5 + \dots]:

    xy=(2+3)6(23)6=2[(61)253+(63)23(3)3+(65)21(3)5]x - y = (2 + \sqrt{3})^6 - (2 - \sqrt{3})^6 = 2 \left[ \binom{6}{1}2^5\sqrt{3} + \binom{6}{3}2^3(\sqrt{3})^3 + \binom{6}{5}2^1(\sqrt{3})^5 \right]

    xy=2[6323+20833+6293]=2[1923+4803+1083]=2[7803]=15603x - y = 2 \left[ 6 \cdot 32\sqrt{3} + 20 \cdot 8 \cdot 3\sqrt{3} + 6 \cdot 2 \cdot 9\sqrt{3} \right] = 2 \left[ 192\sqrt{3} + 480\sqrt{3} + 108\sqrt{3} \right] = 2[780\sqrt{3}] = 1560\sqrt{3}

  4. Find the expression for (2+3)6(2 + \sqrt{3})^6:

    (2+3)6=(x+y)+(xy)2=2702+156032=1351+7803(2 + \sqrt{3})^6 = \frac{(x+y) + (x-y)}{2} = \frac{2702 + 1560\sqrt{3}}{2} = 1351 + 780\sqrt{3}

  5. Compare with the given form k+k21k + \sqrt{k^2 - 1}:

    We have (2+3)6=1351+7803(2 + \sqrt{3})^6 = 1351 + 780\sqrt{3}. Comparing this with k+k21k + \sqrt{k^2 - 1}, we can identify k=1351k = 1351. Now, we need to verify if 7803780\sqrt{3} is indeed equal to k21\sqrt{k^2 - 1} for k=1351k=1351.

    Square 7803780\sqrt{3}: (7803)2=78023=6084003=1825200(780\sqrt{3})^2 = 780^2 \cdot 3 = 608400 \cdot 3 = 1825200.

    Calculate k21k^2 - 1 for k=1351k=1351: k21=135121=(13511)(1351+1)=13501352=1825200k^2 - 1 = 1351^2 - 1 = (1351-1)(1351+1) = 1350 \cdot 1352 = 1825200.

    Since (7803)2=1825200(780\sqrt{3})^2 = 1825200 and k21=1825200k^2 - 1 = 1825200, it confirms that 7803=k21780\sqrt{3} = \sqrt{k^2 - 1} for k=1351k=1351.

Thus, the value of kk is 13511351.