Question
Question: The number $(2 + \sqrt{3})^6$ of can be expressed in the form $k + \sqrt{k^2 - 1}$ where $k$ is a po...
The number (2+3)6 of can be expressed in the form k+k2−1 where k is a positive integer, then k = (where [.] denotes greatest integer function)

1351
Solution
To express (2+3)6 in the form k+k2−1, we can proceed as follows:
-
Expand using the Binomial Theorem:
Let x=(2+3)6. We consider also y=(2−3)6.
-
Compute x+y:
Using the binomial expansion formula for (a+b)n+(a−b)n=2[(0n)an+(2n)an−2b2+(4n)an−4b4+…]:
x+y=(2+3)6+(2−3)6=2[(06)26+(26)24(3)2+(46)22(3)4+(66)(3)6]
x+y=2[1⋅64+15⋅16⋅3+15⋅4⋅9+1⋅27]=2[64+720+540+27]=2[1351]=2702
-
Compute x−y:
Using the binomial expansion formula for (a+b)n−(a−b)n=2[(1n)an−1b+(3n)an−3b3+(5n)an−5b5+…]:
x−y=(2+3)6−(2−3)6=2[(16)253+(36)23(3)3+(56)21(3)5]
x−y=2[6⋅323+20⋅8⋅33+6⋅2⋅93]=2[1923+4803+1083]=2[7803]=15603
-
Find the expression for (2+3)6:
(2+3)6=2(x+y)+(x−y)=22702+15603=1351+7803
-
Compare with the given form k+k2−1:
We have (2+3)6=1351+7803. Comparing this with k+k2−1, we can identify k=1351. Now, we need to verify if 7803 is indeed equal to k2−1 for k=1351.
Square 7803: (7803)2=7802⋅3=608400⋅3=1825200.
Calculate k2−1 for k=1351: k2−1=13512−1=(1351−1)(1351+1)=1350⋅1352=1825200.
Since (7803)2=1825200 and k2−1=1825200, it confirms that 7803=k2−1 for k=1351.
Thus, the value of k is 1351.