Solveeit Logo

Question

Question: The normals at three points P, Q, R of the parabola \({{y}^{2}}=4ax\) meet in \(\left( h,k \right)\)...

The normals at three points P, Q, R of the parabola y2=4ax{{y}^{2}}=4ax meet in (h,k)\left( h,k \right). The centroid of triangle PQR lies on $$$$
A.x=0$$$$$ B.y=0 C.$x=-a
D.y=ay=-a$$$$

Explanation

Solution

Hint: We use the general equation of normal of given rightward parabola y=mx2amam3y=mx-2am-a{{m}^{3}} and use the satisfaction of the point (h,k)\left( h,k \right) and also the coordinates feet of the normals given as P,Q,R in the form (am2,2am)\left( a{{m}^{2}},-2am \right).We denote the roots as m1,m2,m3{{m}_{1}},{{m}_{2}},{{m}_{3}} which are slopes of the normals . We then use sum of roots of and product of roots of a cubic polynomial to find m1+m2+m3,m1m2+m2m3+m3m1{{m}_{1}}+{{m}_{2}}+{{m}_{3}},{{m}_{1}}{{m}_{2}}+{{m}_{2}}{{m}_{3}}+{{m}_{3}}{{m}_{1}}. We use it to find the centroid of the triangle with vertices (x1,y1),(x2,y2),(x3,y3)\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right),\left( {{x}_{3}},{{y}_{3}} \right) as (x1+x2+x33,y1+y2+y33)\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right).$$$$

Complete step-by-step answer:

We know that the standard equation of a normal at any point with slope mm of the rightward parabola y2=4ax{{y}^{2}}=4ax is given by

y=mx2amam3y=mx-2am-a{{m}^{3}}

The foot of the perpendicular of the above normal is given by (am2,2am)\left( a{{m}^{2}},-2am \right). Since we are given there are three normals; let us denote their slopes as m1,m2,m3{{m}_{1}},{{m}_{2}},{{m}_{3}}. We are also given the normals meet at (h,k)\left( h,k \right).So by satisfaction of (h,k)\left( h,k \right) equation of normal is

k=mh2amam3 am3+(2ah)m+k=0 \begin{aligned} & \Rightarrow k=mh-2am-a{{m}^{3}} \\\ & \Rightarrow a{{m}^{3}}+\left( 2a-h \right)m+k=0 \\\ \end{aligned}

The roots of the cubic equation will be the slopes of normals that is m1,m2,m3{{m}_{1}},{{m}_{2}},{{m}_{3}}. We are given that the normals are drawn at P, Q and R. So using the coordinates of feet of the perpendicular of normal (am2.2am)\left( a{{m}^{2}}.-2am \right) we can assign

P(am12,2am1),Q(am22,2am2),R(am32,2am3)P\left( am_{_{1}}^{2},-2a{{m}_{1}} \right),Q\left( am_{_{2}}^{2},-2a{{m}_{2}} \right),R\left( am_{_{3}}^{2},-2a{{m}_{3}} \right)

So by sum of roots of cubic polynomial we have;

m1+m2+m3=0a=0 m1m2+m2m3+m3m1=2aha \begin{aligned} & {{m}_{1}}+{{m}_{2}}+{{m}_{3}}=\dfrac{0}{a}=0 \\\ & {{m}_{1}}{{m}_{2}}+{{m}_{2}}{{m}_{3}}+{{m}_{3}}{{m}_{1}}=\dfrac{2a-h}{a} \\\ \end{aligned}

Let us denote the centroid of the triangle PQR as GG. The xx-coordinate of the centre is given by

am12+am22+am323 a(m12+m22+m32)3 a(m1+m2+m3)22(m1m2+m2m3+m3m1)3 a022(2ah)a3=23(h2a) \dfrac{am_{1}^{2}+am_{2}^{2}+am_{3}^{2}}{3} \\\ \Rightarrow \dfrac{a\left( m_{1}^{2}+m_{2}^{2}+m_{3}^{2} \right)}{3} \\\ \Rightarrow a\dfrac{{{\left( {{m}_{1}}+{{m}_{2}}+{{m}_{3}} \right)}^{2}}-2\left( {{m}_{1}}{{m}_{2}}+{{m}_{2}}{{m}_{3}}+{{m}_{3}}{{m}_{1}} \right)}{3} \\\ \Rightarrow a\dfrac{{{0}^{2}}-2\dfrac{\left( 2a-h \right)}{a}}{3}=\dfrac{2}{3}\left( h-2a \right) \\\

Let us find the yy-coordinate of GG. We have;

2am1+(2am2)+(2am3)3 2a(m1+m2+m3)3 2a(m1+m2+m3)3=0 \begin{aligned} & \dfrac{-2a{{m}_{1}}+\left( -2a{{m}_{2}} \right)+\left( -2a{{m}_{3}} \right)}{3} \\\ & \Rightarrow \dfrac{-2a\left( {{m}_{1}}+{{m}_{2}}+{{m}_{3}} \right)}{3} \\\ & \Rightarrow \dfrac{-2a\left( {{m}_{1}}+{{m}_{2}}+{{m}_{3}} \right)}{3}=0 \\\ \end{aligned}

So the coordinates of GG are G(23(h2a),0)G\left( \dfrac{2}{3}\left( h-2a \right),0 \right). So the yy-coordinate of G will always be zero which means G will always lie on the xx-axis whose equation is y=0y=0.

So, the correct answer is “Option A”.

Note: We note that the general form of the cubic equation is given by ax3+bx2+cx+d=0a{{x}^{3}}+b{{x}^{2}}+cx+d=0. If the roots of the cubic equation are α1,α2,α3{{\alpha }_{1}},{{\alpha }_{2}},{{\alpha }_{3}} then the sum of the roots is given by α1+α2+α3=ba{{\alpha }_{1}}+{{\alpha }_{2}}+{{\alpha }_{3}}=\dfrac{-b}{a}, the sum of the roots taking product of two at a time is given by α1α2+α2α3+α3α1=ca{{\alpha }_{1}}{{\alpha }_{2}}+{{\alpha }_{2}}{{\alpha }_{3}}+{{\alpha }_{3}}{{\alpha }_{1}}=\dfrac{c}{a} and the product of the roots is given by α1α2α3=da{{\alpha }_{1}}{{\alpha }_{2}}{{\alpha }_{3}}=\dfrac{-d}{a}. We can directly solve if we know that the centroid of the triangle made by feet of three normals always lies on the axis of the parabola and the axis of given parabola y2=4ax{{y}^{2}}=4axis y=0y=0.