Solveeit Logo

Question

Question: The normal to the hyperbola 4x<sup>2</sup> - 9y<sup>2</sup> = 36 meets the axes in M and N and the l...

The normal to the hyperbola 4x2 - 9y2 = 36 meets the axes in M and N and the lines MP, NP are drawn at right angles to the axes. The locus of P is the hyperbola.

A

9x2 - 4y2 = 169

B

4x2 - 9y2 = 169

C

3x2 - 4y2 = 169

D

None of these

Answer

9x2 - 4y2 = 169

Explanation

Solution

The given hyperbola can be written in the form

x29y24=1\frac{x^{2}}{9} - \frac{y^{2}}{4} = 1.

The equation of any normal to the given hyperbola is 3xsecθ+2ytanθ=13\frac{3x}{\sec\theta} + \frac{2y}{\tan\theta} = 13.

It meets x-axis in M (133secθ,0)\left( \frac{13}{3}\sec\theta,0 \right) and y-axis in N (0,132tanθ)\left( 0,\frac{13}{2}\tan\theta \right).

Let the coordinates of P be (x1, y1).

Since MP ⊥ NP, x1 = NP = 132\frac{13}{2} secθ, y1 = MP = 133\frac{13}{3} tanθ

∴ secθ = 3x113\frac{3x_{1}}{13} and tanθ = 2y113\frac{2y_{1}}{13}.

9x121694y12169=1\frac{9x_{1}^{2}}{169} - \frac{4y_{1}^{2}}{169} = 1 (\becausesec2θ - tan2θ = 1)

Hence the locus of (x1, y1) is 9x2 - 4y2 = 169.