Solveeit Logo

Question

Mathematics Question on Application of derivatives

The normal to the curve y(x2)(x3)=x+6y(x-2)(x-3)=x+6 at the point where the curve intersects the y-axis passes through the point :

A

(12,12)\left(\frac{1}{2} , \frac{1}{2}\right)

B

(12,13)\left(\frac{1}{2} , - \frac{1}{3}\right)

C

(12,13)\left(\frac{1}{2} , \frac{1}{3}\right)

D

(12,12)\left( - \frac{1}{2} , - \frac{1}{2}\right)

Answer

(12,12)\left(\frac{1}{2} , \frac{1}{2}\right)

Explanation

Solution

y(x2)(x3)=x+6y(x - 2)(x - 3) = x + 6
At y-axis, x=0,y=1x = 0,\, y = 1
Now, on differentiation.
dydx(x2)(x3)+y(2x5)=1\frac{dy}{dx} \left(x-2\right)\left(x-3\right)+y\left(2x-5\right) = 1
dydx(6)+1(5)=1\frac{dy}{dx}\left(6\right)+1\left(-5\right) = 1
dydx=66=1\frac{dy}{dx} = \frac{6}{6} = 1
Now slope of normal =1= -1
Equation of normal y1=(x0)y - 1 = -(x - 0)
y+x1=0y + x - 1 = 0... (i)
Line(i) passes through (12,12)\left(\frac{1}{2}, \frac{1}{2}\right)