Solveeit Logo

Question

Mathematics Question on Tangents and Normals

The normal to the curve x=a(cosθ+θsinθ).y=a(sinθθcosθ)x=a\left(cos\,\theta+\theta\,sin\,\theta \right). y=a\left(sin\,\theta -\theta\,cos\,\theta \right) at any point θ'\theta' is such that :

A

it is at a constant distance from the origin

B

it passes through (aπ/2,a)(a\, \pi/2, - a)

C

it makes angle π/2+θ\pi/2 + \theta with the xx-axis

D

it passes through the origin

Answer

it makes angle π/2+θ\pi/2 + \theta with the xx-axis

Explanation

Solution

Equation of normal at any point (x1y1)(x_1 y_1) on any curve is yy1=1(dydx)(x1,y1)(xx1)y-y_{1}=-\frac{1}{\left(\frac{dy}{dx}\right)_{_{\left(x_1, y_1\right)}}} \left(x-x_{1}\right) Given that x=a(cosθ+θsinθ)x = a \left(cos\,\theta + \theta\,sin\,\theta\right) dxdθ=a(sinθ+sinθ+θcosθ)\frac{dx}{d\theta}=a\left(-sin\,\theta+sin\,\theta +\theta\,cos\,\theta \right) dxdθ=aθcosθ\Rightarrow \frac{dx}{d\theta }=a\,\theta \,cos\,\theta and y=a(sinθθcosθ)y=a\left(sin\,\theta -\theta\,cos\,\theta \right) dydθ=aθsinθ\Rightarrow \frac{dy}{d\theta}=a\,\theta \,sin\,\theta dxdy=dy/dθdx/dθ=tanθ\therefore \frac{dx}{dy}=-\frac{dy/d\theta}{dx/d\theta }=tan\,\theta Slope of normal =dxdy=cotθ=tan(π2+θ)=-\frac{dx}{dy}=-cot\,\theta=tan\left(\frac{\pi}{2}+\theta\right) So equation of normal is yasinθ+aθcosθ=cosθsinθ(xacosθasinθ)y-a\,sin\,\theta+a\,\theta\,cos\,\theta= -\frac{cos\theta}{sin\,\theta}\left(x-a\,cos\,\theta-a\,sin\,\theta\right) sin0yasin2θ+aθcosθsinθ\Rightarrow sin\,0y-a\,sin^{2}\,\theta+a\,\theta\,cos\,\theta\,sin\,\theta =xcos0+acos2θ+aθsinθcosθ=-x\,cos\,0+a\,cos^{2}\,\theta+a\,\theta\,sin\,\theta cos\,\theta xcosθ+ysinθ=a\Rightarrow x\,cos\,\theta+y\,sin\,\theta=a It is always at a constant distance a'a' from origin.