Solveeit Logo

Question

Question: The normal at the point \(\left( at_{1}^{2},2a{{t}_{1}} \right)\) meets the parabola again in the po...

The normal at the point (at12,2at1)\left( at_{1}^{2},2a{{t}_{1}} \right) meets the parabola again in the point (at22,2at2)\left( at_{2}^{2},2a{{t}_{2}} \right) , prove that t2=t12t1{{t}_{2}}=-{{t}_{1}}-\dfrac{2}{{{t}_{1}}}.

Explanation

Solution

Hint: To establish the relation between t1{{t}_{1}} and t2{{t}_{2}} . Find the equation of the normal at point P(at12,2at1)P\left( at_{1}^{2},2a{{t}_{1}} \right) .Now put Q(at22,2at2)Q\left( at_{2}^{2},2a{{t}_{2}} \right) in this equation. Simplify the equation using basic formulas and prove the relation given.

Complete step-by-step answer:
It is said that the normal at the point (at12,2at1)\left( at_{1}^{2},2a{{t}_{1}} \right) meets the parabola again in the point (at22,2at2)\left( at_{2}^{2},2a{{t}_{2}} \right).
Let cut the equation of parabola y2=4ax{{y}^{2}}=4ax .


Let the 2 point on the parabola be P(at12,2at1)P\left( at_{1}^{2},2a{{t}_{1}} \right) and Q(at22,2at2)Q\left( at_{2}^{2},2a{{t}_{2}} \right) .
We need to establish the relation between t1{{t}_{1}} and t2{{t}_{2}} .
Normally a point P is given by the equation y=t1x+2at1+at13y=-{{t}_{1}}x+2a{{t}_{1}}+at_{1}^{3} . We know Q(at22,2at2)Q\left( at_{2}^{2},2a{{t}_{2}} \right) , thus this point should be able to satisfy the equation. Put y=2at2y=2a{{t}_{2}} and x=at22x=at_{2}^{2} in the above equation. Thus we get-
2at2=t1(at22)+2at1+at132a{{t}_{2}}=-{{t}_{1}}\left( at_{2}^{2} \right)+2a{{t}_{1}}+at_{1}^{3}
Now let us simplify this above equation.
The equation of normal for the general equation parabola y2=4ax{{y}^{2}}=4ax is given as,
yy1=y12a(xx1)y-{{y}_{1}}=\dfrac{-{{y}_{1}}}{2a}\left( x-{{x}_{1}} \right) .
Now let us find the equation of normal for point P(at12,2at1)P\left( at_{1}^{2},2a{{t}_{1}} \right). Thus, put x=at12x=at_{1}^{2} and y1=2at1{{y}_{1}}=2a{{t}_{1}} in the above equation.
y2at1=2at12a(xat12)y-2a{{t}_{1}}=\dfrac{-2a{{t}_{1}}}{2a}\left( x-at_{1}^{2} \right)
Now cancel out the like terms and simplify the above expression,
y2at1=t1(xat12) y2at1=xt1+at13 y=t1x+at13 \begin{aligned} & y-2a{{t}_{1}}=-{{t}_{1}}\left( x-at_{1}^{2} \right) \\\ & y-2a{{t}_{1}}=-x{{t}_{1}}+at_{1}^{3} \\\ & \Rightarrow y=-{{t}_{1}}x+at_{1}^{3} \\\ \end{aligned}
Normally a point P is given by the equation y=t1x+2at1+at13y=-{{t}_{1}}x+2a{{t}_{1}}+at_{1}^{3} . We know Q(at22,2at2)Q\left( at_{2}^{2},2a{{t}_{2}} \right) , thus this point should be able to satisfy the equation. Put y=2at2y=2a{{t}_{2}} and x=at22x=at_{2}^{2} in the above equation. Thus we get-
2at2=t1(at22)+2at1+at132a{{t}_{2}}=-{{t}_{1}}\left( at_{2}^{2} \right)+2a{{t}_{1}}+at_{1}^{3}
Now let us simplify this above equation.
2at2=at1t22+2at1+at13 at22t1at13=2at12at2 at1(t22t12)=2a(t1t2) at1(t22t12)2a(t1t2)=0 at1(t2t1)(t2+t1)+2a(t2t1)=0 \begin{aligned} & 2a{{t}_{2}}=-a{{t}_{1}}t_{2}^{2}+2a{{t}_{1}}+at_{1}^{3} \\\ & \Rightarrow at_{2}^{2}{{t}_{1}}-at_{1}^{3}=2a{{t}_{1}}-2a{{t}_{2}} \\\ & a{{t}_{1}}\left( t_{2}^{2}-t_{1}^{2} \right)=2a\left( {{t}_{1}}-{{t}_{2}} \right) \\\ & a{{t}_{1}}\left( t_{2}^{2}-t_{1}^{2} \right)-2a\left( {{t}_{1}}-{{t}_{2}} \right)=0 \\\ & a{{t}_{1}}\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)+2a\left( {{t}_{2}}-{{t}_{1}} \right)=0 \\\ \end{aligned} (We know a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right))
Take out a(t2t1)a\left( {{t}_{2}}-{{t}_{1}} \right) from both terms.
a(t2t1)[t1(t2+t1)+2]=0a\left( {{t}_{2}}-{{t}_{1}} \right)\left[ {{t}_{1}}\left( {{t}_{2}}+{{t}_{1}} \right)+2 \right]=0
Thus a(t2t1)=0a\left( {{t}_{2}}-{{t}_{1}} \right)=0

& {{t}_{1}}\left( {{t}_{2}}+{{t}_{1}} \right)+2=0 \\\ & \Rightarrow {{t}_{1}}\left( {{t}_{2}}+{{t}_{1}} \right)=-2 \\\ & {{t}_{2}}+{{t}_{1}}=\dfrac{-2}{{{t}_{1}}} \\\ & \therefore {{t}_{2}}=-t-\dfrac{2}{{{t}_{1}}} \\\ \end{aligned}$$ Thus, we provide that the normal at the point $\left( at_{1}^{2},2a{{t}_{1}} \right)$ meets the parabola again in the point $\left( at_{2}^{2},2a{{t}_{2}} \right)$ and we get ${{t}_{2}}=-{{t}_{1}}-\dfrac{2}{{{t}_{1}}}$ . Note: If normal at the point $a{{t}_{1}}$ meets the parabola again at $a{{t}_{2}}$ then $a{{t}_{2}}=a{{t}_{1}}-\dfrac{2}{a{{t}_{1}}}$ , The point of intersection of the normal to the parabola ${{y}^{2}}=4ax$ , ${{t}_{1}}$ and ${{t}_{2}}$ are $\left( 2a+a\left( t_{1}^{2}+{{t}_{1}}{{t}_{2}}+t_{2}^{2} \right),-a{{t}_{1}}{{t}_{2}}\left( {{t}_{1}}+{{t}_{2}} \right) \right)$ .