Solveeit Logo

Question

Mathematics Question on Parabola

The normal at the point (at12,2at1)(at_1^2 ,\, 2at_1) on the parabola meets the parabola again in the point (at12,2at2)(at_1^2 ,\, 2at_2) , then

A

t2=t1+2t1 t_{2} = -t_{1} +\frac{2}{t_{1}}

B

t2=t12t1 t_{2} = -t_{1} -\frac{2}{t_{1}}

C

t2=t12t1 t_{2} = t_{1} -\frac{2}{t_{1}}

D

t2=t1+2t1 t_{2} = t_{1} +\frac{2}{t_{1}}

Answer

t2=t12t1 t_{2} = -t_{1} -\frac{2}{t_{1}}

Explanation

Solution

Equation of the normal at point (at12,2at1)(at_1^2 ,\, 2at_1) on parabola is
y=t1x+2at1+at13y = -t_{1}x + 2at_{1} + at_{1}^{3}
It also passes through (at12,2at2)\left(at_{1}^{2} ,\, 2at_{2}\right)
So, 2at2=t1(at22)+2at1+at132at_{2} = -t_{1}\left(at^{2}_{2}\right)+2at_{1}+at^{3}_{1}
2t22t1=t1(t22t12)\Rightarrow 2t_{2}-2t_{1} = -t_{1}\left(t^{2}_{2}-t^{2}_{1}\right)
t1+t2=2t1\Rightarrow t_{1}+t_{2} = \frac{-2}{t_{1}}
t2=t12t1\Rightarrow t_{2} = -t_{1} -\frac{2}{t_{1}}