Solveeit Logo

Question

Mathematics Question on Parabola

The normal at (2,32)\left(2,\frac{3}{2}\right) to the ellipse, x216+y23=1\frac{x^{2}}{16}+\frac{y^{2}}{3} = 1 touches a parabola, whose equation is

A

y2=104xy^2 =- 10^4\,x

B

y2=14xy^2=14\,x

C

y2=26xy^2 = 26\,x

D

y2=14xy^2 = - 14\,x

Answer

y2=104xy^2 =- 10^4\,x

Explanation

Solution

Ellipse is x216+y23=1 \frac{x^{2}}{16}+\frac{y^{2}}{3} = 1 Now, equation of normal at (2,3/2)\left(2, 3/2\right) is 16x23y3/2=163\frac{16x}{2}-\frac{3y}{3/2} = 16-3 8x2y=13\Rightarrow\quad8x-2y= 13 y=4x132\Rightarrow \quad y=4x-\frac{13}{2} Let y=4x132y=4x-\frac{13}{2} touches a parabola y2=4ax.y^{2} = 4ax. We know, a straight liney =mx+c= mx + c touches a parabola y2=4axy^{2}=4ax if a-me =0= 0 a(4)(132)=0a=26\therefore\quad a-\left(4\right)\left(-\frac{13}{2}\right) = 0 \Rightarrow a = -26 Hence, required equation of parabola is y2=4(26)x=104xy^{2} = 4\left(-26\right)x = -104\,x