Solveeit Logo

Question

Question: The normal at a variable point P on an ellipse \(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}\) = 1 of ...

The normal at a variable point P on an ellipse x2a2+y2b2\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 of eccentricity 'e' meets the axes of the ellipse in Q and R then the locus of the mid-point of QR is a conic with an eccentricity e' such that –

A

e' = 1

B

e' = e

C

e' = 1/e

D

e' is independent of e

Answer

e' = e

Explanation

Solution

Equation of normal at P ŗ (a cos q, b sin q)

is axcosθ\frac{ax}{\cos\theta}bysinθ\frac{by}{\sin\theta}= a2 – b2

Q ŗ (a2b2acosθ,0)\left( \frac{a^{2} - b^{2}}{a}\cos\theta,0 \right) R ŗ (0,(a2b2b)sinθ)\left( 0, - \left( \frac{a^{2} - b^{2}}{b} \right)\sin\theta \right)

\ M = (a2b22acosθ,(a2b22b)sinθ)\left( \frac{a^{2} - b^{2}}{2a}\cos\theta, - \left( \frac{a^{2} - b^{2}}{2b} \right)\sin\theta \right)ŗ (h, k)

Hence locus of M

h2(a2b2)24a2\frac{h^{2}}{\frac{(a^{2} - b^{2})^{2}}{4a^{2}}}+ k2(a2b2)24b2\frac{k^{2}}{\frac{(a^{2} - b^{2})^{2}}{4b^{2}}}= 1

which is an ellipse with eccentricity e¢

Q a > b Ž 4a2 > 4b2

Ž 14a2\frac{1}{4a^{2}} < 14b2\frac{1}{4b^{2}}Ž (a2b2)24a2\frac{(a^{2} - b^{2})^{2}}{4a^{2}}< (a2b2)24b2\frac{(a^{2} - b^{2})^{2}}{4b^{2}}

(a2b2)24a2\frac{(a^{2} - b^{2})^{2}}{4a^{2}}=(a2b2)24b2\frac{(a^{2} - b^{2})^{2}}{4b^{2}} (1 – e¢2) Ž b2 = a2(1 – e¢2)

Ž e = e¢