Solveeit Logo

Question

Question: The ninth term in the expansion of \(\left\{ 3^{\log_{3}\sqrt{25^{x - 1} + 7}} + 3^{- 1/8\log_{3}(5...

The ninth term in the expansion of

{3log325x1+7+31/8log3(5x1+1)}10\left\{ 3^{\log_{3}\sqrt{25^{x - 1} + 7}} + 3^{- 1/8\log_{3}(5^{x - 1} + 1)} \right\}^{10} is equal to 180, then x is

A

2

B

1

C

4

D

None of these

Answer

1

Explanation

Solution

We have,

{3log325x1+7+31/8log3(5x1+1)}10\left\{ 3^{\log_{3}\sqrt{25^{x - 1} + 7}} + 3^{- 1/8\log_{3}(5^{x - 1} + 1)} \right\}^{10}

= [25x1+7+(5x1+1)1/8]10\left\lbrack \sqrt{25^{x - 1} + 7} + (5^{x - 1} + 1)^{- 1/8} \right\rbrack^{10}

{Q alogaNa^{\log_{a}N}= N}

Here, T9 = 180.

Ž 10C8 {25x1+7}108\left\{ \sqrt{25^{x - 1} + 7} \right\}^{10 - 8}{(5x–1 + 1)–1/8}8 = 180

Ž 10C8(25x–1 + 7) (5x–1 + 1)–1 = 180

Ž 45(25x1+7)5x1+1\frac{(25^{x - 1} + 7)}{5^{x - 1} + 1} = 180

Ž 25x1+75x1+1\frac{25^{x - 1} + 7}{5^{x - 1} + 1} = 4

Ž y2+7y+1\frac{y^{2} + 7}{y + 1}= 4, where y = 5x–1

Ž y2 – 4y + 3 = 0

Ž y = 3, 1

Ž 5x–1 = 3 or 5x–1 = 1

Ž 5x = 15 or 5x = 5

Ž x = log515 or x = 1

Hence (2) is correct answer.