Solveeit Logo

Question

Question: The new equation of curve \(12x^{2} + 7xy - 12y^{2} - 17x - 31y - 7 = 0\)after removing the first d...

The new equation of curve

12x2+7xy12y217x31y7=012x^{2} + 7xy - 12y^{2} - 17x - 31y - 7 = 0after removing the first degree terms

A

12X27XY12Y2=012X^{2} - 7XY - 12Y^{2} = 0

B

12X2+7XY+12Y2=012X^{2} + 7XY + 12Y^{2} = 0

C

12X2+7XY12Y2=012X^{2} + 7XY - 12Y^{2} = 0

D

None of these

Answer

12X2+7XY12Y2=012X^{2} + 7XY - 12Y^{2} = 0

Explanation

Solution

Letφ12x2+7xy12y217x31y7=0\varphi \equiv 12x^{2} + 7xy - 12y^{2} - 17x - 31y - 7 = 0.....(i)

φx24x+7y17=0\frac{\partial\varphi}{\partial x} \equiv 24x + 7y - 17 = 0 and φy7x24y31=0\frac{\partial\varphi}{\partial y} \equiv 7x - 24y - 31 = 0

Their point of intersection is (x,y)(1,1)(x,y) \equiv (1, - 1)

Here α=1,β=1\alpha = 1,\beta = - 1

Shift the origin to (1, –1) then replacing x=X+1x = X + 1and y=Y1y = Y - 1in (i), the required equation is

12(X+1)2+7(X+1)(Y1)12(Y1)217(X+1)31(Y1)7=012(X + 1)^{2} + 7(X + 1)(Y - 1) - 12(Y - 1)^{2} - 17(X + 1) - 31(Y - 1) - 7 = 0 i.e., 12X2+7XY12Y2=012X^{2} + 7XY - 12Y^{2} = 0

Alternative Method : Here α=1\alpha = 1 and β=1\beta = - 1 and

g=17/2,f=31/2,c=7g = - 17/2,f = - 31/2,c = - 7

gα+fβ+c=172×1312×17=0\therefore g\alpha + f\beta + c = - \frac{17}{2} \times 1 - \frac{31}{2} \times - 1 - 7 = 0

\therefore Removed equation is aX2+2hXY+bY2+(gα+fβ+c)=0aX^{2} + 2hXY + bY^{2} + (g\alpha + f\beta + c) = 0 i.e., 12X2+7XY12Y2+0=012X^{2} + 7XY - 12Y^{2} + 0 = 0 \Rightarrow 12X2+7XY12Y2=012X^{2} + 7XY - 12Y^{2} = 0.