Question
Question: The network shown in the figure is part of a complete circuit. If at a certain instant, the current ...
The network shown in the figure is part of a complete circuit. If at a certain instant, the current I is 4 A and it is increasing at a rate of 104 As−1 then (Vp−Vq) is :
A. 56 V
B. 76 V
C. -56 V
D. 66 V
Solution
In this question we have been asked to calculate the voltage difference between points P and Q. from the diagram we can say that the given network is a inductor-resistor circuit. Now, from Kirchhoff’s loop rule we know that the sum of all electric potential differences around a loop is zero. Therefore, we shall write the equation for voltage drop and calculate the difference between points P and Q.
Complete step-by-step answer:
Let us assume that the given circuit is a complete loop. Therefore, now we can apply Kirchhoff’s loop rule.
Writing the voltage drop equation for given circuit
We get,
Vp−iR−V−Ldtdi−Vq=0
Now, it is given that current I is 4 A. Also, from the diagram we know, inductance L is 5 mH i.e. 5×103H, voltage V is 10 V and resistance R is 10 Ohms. We have been given that dtdi=104As−1
Therefore, after substituting the all the given values
We get,
Vp−4×4−10−5×10−3×104−Vq=0
On solving
We get,
Vp−Vq=76
So, the correct answer is “Option B”.
Note: The resistor-inductor circuit consists of a resistor and inductor driven by voltage or current source. The Kirchhoff’s loop rule also known as Kirchhoff’s voltage law states that the sum of voltage difference across a complete loop is always zero. It means that the voltage drop across a loop is zero. This law is similar to conservation of energy in terms of electric potential.