Solveeit Logo

Question

Mathematics Question on mathematical reasoning

The negation of p(pq)p \to (\sim p \vee q) is

A

p(pq)p \vee (p \vee \sim q)

B

p(pq)p \rightarrow \sim (p \vee q)

C

pqp \rightarrow q

D

pqp \wedge \sim q

Answer

pqp \wedge \sim q

Explanation

Solution

Truth table

p
q
p\sim p
q\sim q
(pq)(\sim p \vee q)
p(pq)p \rightarrow(\sim p \vee q )
(pq)( - p \vee- q )
p(pq)p \vee(\sim p \vee q )
(pq)\sim( p \vee q )
p(pq)p \rightarrow\sim( p \vee q )
pqp \rightarrow q
pqp \wedge \sim q
[p(pq)]\sim[p \rightarrow(\sim p \vee q)]

F
F
T
T
T
T
T
T
T
T
T
F
F

F
T
T
F
T
T
F
F
F
T
T
F
F

T
F
F
T
F
F
T
T
F
F
F
T
T

T
T
F
F
T
T
T
T
F
F
T
F
F

Here, we observe that the truth value of column [p(pq)]\sim[p \rightarrow(\sim p \vee q)] and (pq)(p \wedge \sim q) are same.
Hence,[p(pq)](pq)\sim[p \rightarrow(\sim p \vee q)] \equiv(p \wedge \sim q)