Solveeit Logo

Question

Mathematics Question on Distance of a Point From a Line

The nearest point on the line 3x+4y=123x + 4y = 12 from the origin is

A

(3625,4825)\left(\frac{36}{25} , \frac{48}{25}\right)

B

(3,34)\left(3 , \frac{3}{4}\right)

C

(2,32)\left(2 , \frac{3}{2}\right)

D

None of these

Answer

(3625,4825)\left(\frac{36}{25} , \frac{48}{25}\right)

Explanation

Solution

If ‘D’ be the foot of altitude, drawn from origin to the given line, then �DD� is the required point.
Let OBA=θ\angle OBA = \theta
tanθ=4/3\Rightarrow \, \tan \theta = 4/3
DOA=θ\Rightarrow \, \angle DOA = \theta
we have OD=12/5OD = 12/5
If DD is (h,k)(h, k) then h=ODcosθ,k=ODsinθh = OD \cos \theta, k = OD \sin \theta
h=36/25,k=48/25\Rightarrow \, h = 36/25, k = 48/25.