Solveeit Logo

Question

Question: The multiplicative inverse of matrix \[\left[ {\begin{array}{*{20}{c}} 2&1 \\\ 7&4 \end{...

The multiplicative inverse of matrix \left[ {\begin{array}{*{20}{c}} 2&1 \\\ 7&4 \end{array}} \right] is
A. \left[ {\begin{array}{*{20}{c}} 4&{ - 1} \\\ 7&2 \end{array}} \right]
B. \left[ {\begin{array}{*{20}{c}} 4&{ - 1} \\\ { - 7}&2 \end{array}} \right]
C. \left[ {\begin{array}{*{20}{c}} 4&{ - 1} \\\ { - 7}&{ - 2} \end{array}} \right]
D. \left[ {\begin{array}{*{20}{c}} { - 4}&{ - 1} \\\ 7&{ - 2} \end{array}} \right]

Explanation

Solution

First, we will use the formula of the inverse of the matrix A = \left[ {\begin{array}{*{20}{c}} a&b; \\\ c&d; \end{array}} \right] by, {A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}} d&{ - b} \\\ { - c}&a; \end{array}} \right], where A\left| A \right| is the determinantAA. Then we will find the value of aa, bb, cc and dd from the given matrix AA and then substitute them in the formula of inverse of matrix to find the required value.

Complete step by step answer:

We are given that the matrix is \left[ {\begin{array}{*{20}{c}} 2&1 \\\ 7&4 \end{array}} \right].
We know that the inverse of the matrix A = \left[ {\begin{array}{*{20}{c}} a&b; \\\ c&d; \end{array}} \right] by using the formula, {A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}} d&{ - b} \\\ { - c}&a; \end{array}} \right], where A\left| A \right| is the determinant of AA.

Finding the value of aa, bb, cc and dd from the given matrix AA, we get
a=2\Rightarrow a = 2
b=1\Rightarrow b = 1
c=7\Rightarrow c = 7
d=4\Rightarrow d = 4

Then we will compute the value of determinant of AA using the above values, we get

\Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}} 2&1 \\\ 7&4 \end{array}} \right| \\\ \Rightarrow \left| A \right| = 8 - 7 \\\ \Rightarrow \left| A \right| = 1 \\\

Substituting the above values of the determinant of A, aa, bb, cc and dd in the formula of inverse of matrix, we get

\Rightarrow {A^{ - 1}} = \dfrac{1}{1}\left[ {\begin{array}{*{20}{c}} 4&{ - 1} \\\ { - 7}&2 \end{array}} \right] \\\ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}} 4&{ - 1} \\\ { - 7}&2 \end{array}} \right] \\\

Hence, option B is correct.

Note: In these types of questions, the key concept is to find the inverse by putting the values in the formula of inverse. Students should know that the matrix \left[ {\begin{array}{*{20}{c}} d&{ - b} \\\ { - c}&a; \end{array}} \right] is the adjoint matrix of AA. We can remember this matrix to save some time in the 2×22 \times 2 matrix but we have to compute the value of adjAadjA in the matrix more than 2 rows and 2 columns. When a student knows the formula of inverse, the solution is very simple and easy.