Question
Question: The multiplicative inverse of matrix \[\left[ {\begin{array}{*{20}{c}} 2&1 \\\ 7&4 \end{...
The multiplicative inverse of matrix \left[ {\begin{array}{*{20}{c}}
2&1 \\\
7&4
\end{array}} \right] is
A. \left[ {\begin{array}{*{20}{c}}
4&{ - 1} \\\
7&2
\end{array}} \right]
B. \left[ {\begin{array}{*{20}{c}}
4&{ - 1} \\\
{ - 7}&2
\end{array}} \right]
C. \left[ {\begin{array}{*{20}{c}}
4&{ - 1} \\\
{ - 7}&{ - 2}
\end{array}} \right]
D. \left[ {\begin{array}{*{20}{c}}
{ - 4}&{ - 1} \\\
7&{ - 2}
\end{array}} \right]
Solution
First, we will use the formula of the inverse of the matrix A = \left[ {\begin{array}{*{20}{c}} a&b; \\\ c&d; \end{array}} \right] by, {A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}} d&{ - b} \\\ { - c}&a; \end{array}} \right], where ∣A∣ is the determinantA. Then we will find the value of a, b, c and d from the given matrix A and then substitute them in the formula of inverse of matrix to find the required value.
Complete step by step answer:
We are given that the matrix is \left[ {\begin{array}{*{20}{c}}
2&1 \\\
7&4
\end{array}} \right].
We know that the inverse of the matrix A = \left[ {\begin{array}{*{20}{c}}
a&b; \\\
c&d;
\end{array}} \right] by using the formula, {A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}}
d&{ - b} \\\
{ - c}&a;
\end{array}} \right], where ∣A∣ is the determinant of A.
Finding the value of a, b, c and d from the given matrix A, we get
⇒a=2
⇒b=1
⇒c=7
⇒d=4
Then we will compute the value of determinant of A using the above values, we get
\Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}} 2&1 \\\ 7&4 \end{array}} \right| \\\ \Rightarrow \left| A \right| = 8 - 7 \\\ \Rightarrow \left| A \right| = 1 \\\Substituting the above values of the determinant of A, a, b, c and d in the formula of inverse of matrix, we get
\Rightarrow {A^{ - 1}} = \dfrac{1}{1}\left[ {\begin{array}{*{20}{c}} 4&{ - 1} \\\ { - 7}&2 \end{array}} \right] \\\ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}} 4&{ - 1} \\\ { - 7}&2 \end{array}} \right] \\\Hence, option B is correct.
Note: In these types of questions, the key concept is to find the inverse by putting the values in the formula of inverse. Students should know that the matrix \left[ {\begin{array}{*{20}{c}} d&{ - b} \\\ { - c}&a; \end{array}} \right] is the adjoint matrix of A. We can remember this matrix to save some time in the 2×2 matrix but we have to compute the value of adjA in the matrix more than 2 rows and 2 columns. When a student knows the formula of inverse, the solution is very simple and easy.