Question
Question: The multiplicative inverse of A =\(\begin{bmatrix} \cos\theta & - \sin\theta \\ \sin\theta & \cos\th...
The multiplicative inverse of A =[cosθsinθ−sinθcosθ]is
A
$\begin{bmatrix}
- \cos\theta & \sin\theta \
- \sin\theta & - \cos\theta \end{bmatrix}$
B
$\begin{bmatrix} \cos\theta & \sin\theta \
- \sin\theta & \cos\theta \end{bmatrix}$
C
$\begin{bmatrix}
- \cos\theta & - \sin\theta \ \sin\theta & - \cos\theta \end{bmatrix}$
D
[cosθsinθsinθ−cosθ]
Answer
$\begin{bmatrix} \cos\theta & \sin\theta \
- \sin\theta & \cos\theta \end{bmatrix}$
Explanation
Solution
|A| = cos2q + sin2 q = 1
Adj. A =$\begin{bmatrix} \cos\theta & \sin\theta \
- \sin\theta & \cos\theta \end{bmatrix}$
A–1=∣A∣Adj.A= $\begin{bmatrix} \cos\theta & \sin\theta \
- \sin\theta & \cos\theta \end{bmatrix}$