Solveeit Logo

Question

Physics Question on Gravitation

The motion of planets in the solar system is an example of conservation of

A

mass

B

momentum

C

angular momentum

D

kinetic energy

Answer

angular momentum

Explanation

Solution

Areal speed of planet is constant. From Kepler's second law of motion, a line joining any planet to the sun sweeps out equal areas in equal intervals of time. Let any instant tt, the planet is in position AA. Then area swept out be SASA is dA=dA = area of the curved triangle SABSAB =12(AB×SA)=\frac{1}{2}(AB\times SA) =12(rdθ×r)=12r2dθ=\frac{1}{2}(rd\theta \times r)=\frac{1}{2}{{r}^{2}}d\theta The instantaneous areal speed is dAdt=12r2(dθdt)=12r2ω\frac{dA}{dt}=\frac{1}{2}{{r}^{2}}\left( \frac{d\theta }{dt} \right)=\frac{1}{2}{{r}^{2}}\omega Let JJ be angular momentum II the moment of inertia and mm the mass, then J=Iω=mr2ωJ=I\omega =m{{r}^{2}}\omega \therefore dAdt=J2m= \frac{dA}{dt}=\frac{J}{2m}= constant Hence, angular momentum of the planet is conserved.