Solveeit Logo

Question

Physics Question on Motion in a straight line

The motion of a particle is represented by the equation S=8t32t2+6t+7S = 8t^3 - 2t^2+ 6t + 7 . Find the velocity of the particle at the end of 22 seconds in ms1m s^{-1}

A

108108

B

5757

C

9494

D

4141

Answer

9494

Explanation

Solution

S=8t32t2+6t+7S=8t^{3}-2t^{2}+6t+7
x=nλt=8(3t2)2(2t)+6(1)+7(0)x=n \frac{\lambda}{t}=8 \left(3t^{2}\right)-2\left(2t\right)+6\left(1\right)+7\left(0\right)
=24t24t+6=24t^{2}-4t+6
At t=2st=2\,s,
v=24(2)24(2)+6v=24\left(2\right)^{2}-4\left(2\right)+6
=968+6=96-8+6
=94ms1=94\,m\,s^{-1}