Question
Question: The most general values of x for which \[\sin x + \cos x = {\min _{a \in \mathbb{R}}}\\{ 1,{a^2} - 4...
The most general values of x for which sinx+cosx=mina∈R1,a2−4a+6 are given by
a. 2nπ;n∈Z
b. 2nπ+2π;n∈Z
c. nπ+(−1)n.4π−4π;n∈Z
d. 2nπ−2π;n∈Z
Solution
To start with we can use the fact that what is the minimum value of the given polynomial, a2−4a+6. If the value is less than 1, then we can proceed by using that value for sinx+cosx to find the general value for x.
Complete step-by-step answer:
Given sinx+cosx=mina∈R1,a2−4a+6
We have now,
a2−4a+6
On splitting last term, we get
=a2−4a+4+2
Using a2−2ab+b2=(a−b)2 , we get,
=(a−2)2+2
So, minimum, a2−4a+6
=(0)2+2
On simplification we get,
= 0 + 2$$$$ = 2
So, now, sinx+cosx=min(1,a2−4a+6)
So, the minimum value is, sinx+cosx=1
Then, sinx+cosx=1
Multiplying by 21 , we get,
⇒21sinx+21cosx=21
Using, cos4π=21and sin4π=21 , we get,
⇒sin4πsinx+cos4πcosx=cos4π
Now using cos(a−b)=cosacosb+sinasinb , we get,
⇒cos(x−4π)=cos4π
Using, x=2nπ±y for cosx=cosy, we get,
⇒x−4π=2nπ±4π
On simplification we get,
⇒x=2nπ±4π+4π
Then, x=2nπ+2π or x=2nπ
Also, As, sinx+cosx=1
Multiplying by 21 , we get,
⇒21sinx+21cosx=21
Using, cos4π=21and sin4π=21, we get,
⇒cos4πsinx+sin4πcosx=sin4π
Using sin(a+b)=sinacosb+cosasinb , we get,
⇒sin(x+4π)=sin4π
Using, x=nπ+(−1)nyfor sinx=siny
⇒x+4π=nπ+(−1)n4π
On simplification we get,
⇒x=nπ+(−1)n4π−4π where n∈Z
We have the general value as, x=nπ+(−1)n4π−4π where n∈Z which is option c.
Note: We have the general value of sinx=sinyas, x=nπ+(−1)ny and also cosx=cosy as, x=2nπ±y . Then we get the values of x as, the value of n goes on starting from, n=1,2,3,……. And so on.