Question
Question: The most general values of x for which \(\sin x + \cos x = \mathop {\min }\limits_{a \in {\Bbb R}} \...
The most general values of x for which \sin x + \cos x = \mathop {\min }\limits_{a \in {\Bbb R}} \left\\{ {1,{a^2} - 4a + 6} \right\\} are given by:
\eqalign{
& A.\,\,2n\pi ;n \in {\Bbb Z} \cr
& B.\,\,2n\pi + \dfrac{\pi }{2};n \in {\Bbb Z} \cr
& C.\,\,n\pi + {( - 1)^n}.\dfrac{\pi }{4} - \dfrac{\pi }{4};n \in {\Bbb Z} \cr
& D.\,\,2n\pi - \dfrac{\pi }{2};n \in {\Bbb Z} \cr}
Solution
First we have to find the minimum value, that is we have to simplify the right hand side.Then simplify the equation to find the range of x there so that the equation holds.
Complete step by step solution:
Step1: We know that the value of a perfect square is always non-negative. So the minimum value may be zero.
\eqalign{
& {a^2} - 4a + 6 \cr
& = {(a - 2)^2} + 2 \cr}
Then taking the value of the perfect square to zero.
\eqalign{
& {a^2} - 4a + 6\,\,is\,\,\operatorname{minimum} \,\,for\,\,a = 2 \cr
& so,\mathop {\min }\limits_{a \in { R}} \left\\{ {{a^2} - 4a + 6} \right\\} = {(2 - 2)^2} + 2 = 2 \cr} .
Step2: Simplifying the right hand side, we get
Now,\mathop {\,\,\min }\limits_{a \in {l R}} \left\\{ {1,{a^2} - 4a + 6} \right\\} = 1
Step3: Now from the equation, we have
& \sin x + \cos x = 1 \cr & or,\dfrac{1}{{\sqrt 2 }}\sin x + \dfrac{1}{{\sqrt 2 }}\cos x = \dfrac{1}{{\sqrt 2 }},\,\,both\,\,side\,\,dividing\,\,by\,\,\sqrt 2 \cr & or,\sin x\cos \dfrac{\pi }{4} + \cos x\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} \cr & or,\sin \left( {x + \dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }} \cr & or,\sin \left( {x + \dfrac{\pi }{4}} \right) = \sin \dfrac{\pi }{4} \cr & or,x + \dfrac{\pi }{4} = n\pi + {( - 1)^n}.\dfrac{\pi }{4};n \in {\Bbb Z} \cr & or,x = n\pi + {( - 1)^n}.\dfrac{\pi }{4} - \dfrac{\pi }{4};n \in {\Bbb Z} \cr} $$ Hence,The most general values of x are here, $n\pi + {( - 1)^n}.\dfrac{\pi }{4} - \dfrac{\pi }{4};n \in {\Bbb Z}$ **Therefore,option C) is correct.** **Note:** Here we use the formula $\sin x = \sin \alpha \Rightarrow x = n\pi + {( - 1)^n}\alpha ;n \in {\Bbb Z},\,the\,\,set\,\,of\,\,all\,\,\operatorname{integers} $. These are general values of x for which $\sin x = \sin \alpha $. If we want to solve such types of equations, we have to find out general values or all values satisfying that trigonometric equation.