Solveeit Logo

Question

Question: The most general values of x for which \(\sin x + \cos x = {\min _{a \in R}}\\{ 1,{a^2} - 4a + 6\\} ...

The most general values of x for which sinx+cosx=minaR1,a24a+6\sin x + \cos x = {\min _{a \in R}}\\{ 1,{a^2} - 4a + 6\\} are given by
(a) 2nπ (b) 2nπ+π2 (c) nπ+(1)nπ4π4 (d) none of these  (a){\text{ 2n}}\pi \\\ (b){\text{ 2n}}\pi + \dfrac{\pi }{2} \\\ (c){\text{ n}}\pi + {( - 1)^n}\dfrac{\pi }{4} - \dfrac{\pi }{4} \\\ (d){\text{ none of these}} \\\

Explanation

Solution

Hint – In this question first of all convert the quadratic a24a+6{a^2} - 4a + 6 into a perfect square form so as to determine that which amongst 1 or a24a+6{a^2} - 4a + 6 is minimum. Then equate it to the L.H.S part that is sinx+cosx\sin x + \cos x, then try and convert this into the standard trigonometric form of sin(A+B)=sinAcosB+cosAsinB\sin (A + B) = \sin A\cos B + \cos A\sin B, this will get the value of x, consider the general solution to get the right option.

Complete step-by-step answer:

a24a+6{a^2} - 4a + 6
Now make this complete square by add and subtract by half of square of coefficient of (a) so we have,
a24a+6+(42)2(42)2\Rightarrow {a^2} - 4a + 6 + {\left( {\dfrac{4}{2}} \right)^2} - {\left( {\dfrac{4}{2}} \right)^2}
Now simplify the above equation we have,
a24a+6+44\Rightarrow {a^2} - 4a + 6 + 4 - 4
a24a+4+64\Rightarrow {a^2} - 4a + 4 + 6 - 4
(a2)2+2\Rightarrow {\left( {a - 2} \right)^2} + 2
Now as we know square term is always positive or zero it cannot be negative.
Therefore, [(a2)2+2]2\left[ {{{\left( {a - 2} \right)}^2} + 2} \right] \geqslant 2
So, \min \left\\{ {1,{a^2} - 4a + 6} \right\\} = 1
Therefore, the given equation becomes
sinx+cosx=1\Rightarrow \sin x + \cos x = 1
Now multiply and divide by 2\sqrt 2 in L.H.S we have,
2(12×sinx+12×cosx)=1\Rightarrow \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }} \times \sin x + \dfrac{1}{{\sqrt 2 }} \times \cos x} \right) = 1
Now as we know that sin450=cos450=12\sin {45^0} = \cos {45^0} = \dfrac{1}{{\sqrt 2 }}
2(cos450×sinx+sin450×cosx)=1\Rightarrow \sqrt 2 \left( {\cos {{45}^0} \times \sin x + \sin {{45}^0} \times \cos x} \right) = 1
(cos450×sinx+sin450×cosx)=12=sin450=sinπ4\Rightarrow \left( {\cos {{45}^0} \times \sin x + \sin {{45}^0} \times \cos x} \right) = \dfrac{1}{{\sqrt 2 }} = \sin {45^0} = \sin \dfrac{\pi }{4}, [450=π4]\left[ {{{45}^0} = \dfrac{\pi }{4}} \right]
Now as we know that sin(A+B)=sinAcosB+cosAsinB\sin (A + B) = \sin A\cos B + \cos A\sin B so use this property in above equation we have,
sin(x+450)=sin(x+π4)=sinπ4\Rightarrow \sin \left( {x + {{45}^0}} \right) = \sin \left( {x + \dfrac{\pi }{4}} \right) = \sin \dfrac{\pi }{4}.............. (1)
Now as we know sin is positive in first and second quadrant as
sin(πθ)=sinθ\sin \left( {\pi - \theta } \right) = \sin \theta and sin(2π+θ)=sinθ\sin \left( {2\pi + \theta } \right) = \sin \theta
So in general we can say that
sin(nπ+(1)nθ)=sinθ\Rightarrow \sin \left( {n\pi + {{\left( { - 1} \right)}^n}\theta } \right) = \sin \theta, where nNn \in N
So use this property in equation (1) we have,
sin(x+π4)=sin(nπ+(1)nπ4)\Rightarrow \sin \left( {x + \dfrac{\pi }{4}} \right) = \sin \left( {n\pi + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right)
Now cancel out sin from both sides we have,
(x+π4)=(nπ+(1)nπ4)\Rightarrow \left( {x + \dfrac{\pi }{4}} \right) = \left( {n\pi + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right)
x=nπ+(1)nπ4π4\Rightarrow x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{4} - \dfrac{\pi }{4}
So this is the required most general solution of the given equation.
Hence option (C) is correct.

Note – If a quadratic is not getting converted into a perfect square form initially then the trick is to add and subtract the square of the half of the coefficient of term x in a quadratic equation of the form ax2+bx+c=0a{x^2} + bx + c = 0. It is advised to remember basic trigonometric identities as it helps saving a lot of time while solving problems of this kind.