Solveeit Logo

Question

Question: The most general values of \(\theta \) satisfying \[tan{\text{ }}\theta {\text{ }} + {\text{ }}tan{\...

The most general values of θ\theta satisfying tan θ + tan (3π4 + θ) = 2tan{\text{ }}\theta {\text{ }} + {\text{ }}tan{\text{ }}\left( {\dfrac{{3\pi }}{4}{\text{ }} + {\text{ }}\theta } \right){\text{ }} = {\text{ }}2are given by
\left( 1 \right)$$$$2n\pi {\text{ }} \pm {\text{ }}\dfrac{\pi }{3},{\text{ }}n \in Z
\left( 2 \right)$$$$n\pi {\text{ }} \pm {\text{ }}\dfrac{\pi }{3},{\text{ }}n \in Z
\left( 3 \right)$$$$2n\pi {\text{ }} \pm {\text{ }}\dfrac{\pi }{6},{\text{ }}n \in Z
\left( 4 \right)$$$$n\pi {\text{ }} \pm {\text{ }}\dfrac{\pi }{6},{\text{ }}n \in Z

Explanation

Solution

Hint : We have to find the general value of θ\theta . We solve this by using the trigonometric identities and the general values of the trigonometric functions . We also know the tan function is the ratio of sin function to cos function . Using the trigonometric identities of tan and cot functions and general solutions of trigonometric functions . On simplifying the equation we can find the value of θ\theta .

Complete step-by-step answer :
Given :
tan θ + tan (3π4 + θ) = 2tan{\text{ }}\theta {\text{ }} + {\text{ }}tan{\text{ }}\left( {\dfrac{{3\pi }}{4}{\text{ }} + {\text{ }}\theta } \right){\text{ }} = {\text{ }}2
Also , 3π4\dfrac{{3\pi }}{4}can be written as  π2+π4{\text{ }}\dfrac{\pi }{2} + \dfrac{\pi }{4}
tan θ + tan[π2 + (π4 + θ)] = 2tan{\text{ }}\theta {\text{ }} + {\text{ }}tan\left[ {\dfrac{\pi }{2}{\text{ }} + {\text{ }}\left( {\dfrac{\pi }{4}{\text{ }} + {\text{ }}\theta } \right)} \right]{\text{ }} = {\text{ }}2
We know , tan [ π2 + θ ] =  cot θtan{\text{ }}\left[ {{\text{ }}\dfrac{\pi }{2}{\text{ }} + {\text{ }}\theta {\text{ }}} \right]{\text{ }} = {\text{ }} - {\text{ }}cot{\text{ }}\theta
tan θ  cot (π4 + θ) = 2tan{\text{ }}\theta {\text{ }}-{\text{ }}cot{\text{ }}\left( {\dfrac{\pi }{4}{\text{ }} + {\text{ }}\theta } \right){\text{ }} = {\text{ }}2———(1)
Using the formula of cot (x + y) = (cot x × cot y  1)(cot x + cot y)cot{\text{ }}\left( {x{\text{ }} + {\text{ }}y} \right){\text{ }} = {\text{ }}\dfrac{{\left( {cot{\text{ }}x{\text{ }} \times {\text{ }}cot{\text{ }}y{\text{ }} - {\text{ }}1} \right)}}{{\left( {cot{\text{ }}x{\text{ }} + {\text{ }}cot{\text{ }}y} \right)}}
Applying in equation (1)\left( 1 \right)
tan θ  [ (cot (π4× cot θ  1)(cot (π4+ cot θ) ] = 2tan{\text{ }}\theta {\text{ }}-{\text{ }}\left[ {{\text{ }}\dfrac{{\left( {cot{\text{ (}}\dfrac{\pi }{4}{\text{) }} \times {\text{ }}cot{\text{ }}\theta {\text{ }}-{\text{ }}1} \right)}}{{\left( {cot{\text{ (}}\dfrac{\pi }{4}{\text{) }} + {\text{ }}cot{\text{ }}\theta } \right){\text{ }}}}} \right]{\text{ }} = {\text{ }}2
As , cot π4 = 1cot{\text{ }}\dfrac{\pi }{4}{\text{ }} = {\text{ }}1
tan θ  [ (cot θ  1)(1 + cot θ) ] = 2tan{\text{ }}\theta {\text{ }}-{\text{ }}\left[ {{\text{ }}\dfrac{{\left( {cot{\text{ }}\theta {\text{ }}-{\text{ }}1} \right)}}{{\left( {1{\text{ }} + {\text{ }}cot{\text{ }}\theta } \right)}}{\text{ }}} \right]{\text{ }} = {\text{ }}2
Also, tan θ = 1cot θtan{\text{ }}\theta {\text{ }} = {\text{ }}\dfrac{1}{{cot{\text{ }}\theta }}
tan θ  [ (1  tan θ)(1 + tan θ) ] = 2tan{\text{ }}\theta {\text{ }}-{\text{ }}\left[ {{\text{ }}\dfrac{{\left( {1{\text{ }}-{\text{ }}tan{\text{ }}\theta } \right)}}{{\left( {1{\text{ }} + {\text{ }}tan{\text{ }}\theta } \right)}}{\text{ }}} \right]{\text{ }} = {\text{ }}2
Simplifying the equation , we get
tan θ (1 + tan θ)  (1  tan θ) = 2 (1 + tan θ)tan{\text{ }}\theta {\text{ }}\left( {1{\text{ }} + {\text{ }}tan{\text{ }}\theta } \right){\text{ }}-{\text{ }}\left( {1{\text{ }}-{\text{ }}tan{\text{ }}\theta } \right){\text{ }} = {\text{ }}2{\text{ }}\left( {1{\text{ }} + {\text{ }}tan{\text{ }}\theta } \right)
On further solving
tanθ+tan2θ1+tanθ22tanθ=0tan\theta + ta{n^2}\theta - 1 + tan\theta - 2 - 2tan\theta = 0
tan2θ=3ta{n^2}\theta = 3
Taking square root , we get
tan θ = ±3tan{\text{ }}\theta {\text{ }} = {\text{ }} \pm \surd 3
Also , we know value of tan π3 = ±3tan{\text{ }}\dfrac{\pi }{3}{\text{ }} = {\text{ }} \pm \surd 3
tan θ = ± tan π3tan{\text{ }}\theta {\text{ }} = {\text{ }} \pm {\text{ }}tan{\text{ }}\dfrac{\pi }{3}
As the general value of tan θtan{\text{ }}\theta lies between (π2, π2)\left( {\dfrac{{ - \pi }}{2},{\text{ }}\dfrac{\pi }{2}} \right)
General equation of tan θtan{\text{ }}\theta :
tan θ = tan αtan{\text{ }}\theta {\text{ }} = {\text{ }}tan{\text{ }}\alpha , then  θ = nπ + α\;\theta {\text{ }} = {\text{ }}n\pi {\text{ }} + {\text{ }}\alpha , where nZn \in Z
θ = nπ ± π3, nZ\theta {\text{ }} = {\text{ }}n\pi {\text{ }} \pm {\text{ }}\dfrac{\pi }{3},{\text{ }}n \in Z
hence, the general value of θ = nπ ± π3 , nZ\theta {\text{ }} = {\text{ }}n\pi {\text{ }} \pm {\text{ }}\dfrac{\pi }{3}{\text{ }},{\text{ }}n \in Z
Thus the correct option is (2)\left( 2 \right)
So, the correct answer is “Option B”.

Note: Equations involving trigonometric functions of a variable are called trigonometric equations . The solutions of a trigonometric equation for 0 x < 2π0 \leqslant {\text{ }}x{\text{ }} < {\text{ }}2\pi ( xx is the angle of the trigonometric function ) are called principle solutions . The expressions involving integers ’ n ’{\text{' }}n{\text{ '}}which give all solutions of a trigonometric equation are called general solutions .
Various general formulas of trigonometric functions :
sin θ = sin αsin{\text{ }}\theta {\text{ }} = {\text{ }}sin{\text{ }}\alpha , thenθ=nπ ±(1)nα\theta = n\pi {\text{ }} \pm {( - 1)^n}\alpha , where nZn \in Z
cos θ = cos αcos{\text{ }}\theta {\text{ }} = {\text{ }}cos{\text{ }}\alpha , thenθ = 2nπ ± α\theta {\text{ }} = {\text{ }}2n\pi {\text{ }} \pm {\text{ }}\alpha , where nZn \in Z
tan θ = tan αtan{\text{ }}\theta {\text{ }} = {\text{ }}tan{\text{ }}\alpha , thenθ = nπ + α\theta {\text{ }} = {\text{ }}n\pi {\text{ }} + {\text{ }}\alpha , where nZn \in Z