Solveeit Logo

Question

Question: The most general values of \(\theta \) for which \(\sin \theta - \cos \,\theta \, = \,\mathop {\min ...

The most general values of θ\theta for which sinθcosθ=minaR(1,a26a + 11)\sin \theta - \cos \,\theta \, = \,\mathop {\min }\limits_{{\text{a}} \in {\text{R}}} \,(1,\,{{\text{a}}^2}\, - \,6{\text{a}}\,{\text{ + }}\,{\text{11)}} are given by
A) nπ + ( - 1)nπ4π4,&nz{\text{n}}\pi \,{\text{ + }}\,{{\text{( - 1)}}^n}\dfrac{\pi }{4} - \dfrac{\pi }{4},\, \& \,{\text{n}}\, \in \,z\,
B) nπ + ( - 1)nπ4+π4,&nz{\text{n}}\pi \,{\text{ + }}\,{{\text{( - 1)}}^n}\dfrac{\pi }{4} + \dfrac{\pi }{4},\, \&\, {\text{n}}\, \in \,z\,
C) 2nπ+π2&,nz2{\text{n}}\pi \, + \,\dfrac{\pi }{2}\, \& ,\,{\text{n}} \in {\text{z}}
D) nπ+π2&,nz{\text{n}}\pi \, + \,\dfrac{\pi }{2}\, \& ,\,{\text{n}} \in {\text{z}}

Explanation

Solution

Differentiating the equation a2 - 6a + 11{{\text{a}}^{\text{2}}}{\text{ - 6a + 11}} and finding the minimum values of a gives us the minimum value of (1,a26a+11)(1,\,{{\text{a}}^2} - 6{\text{a}} + 11) using sin(A-B) formula, we can get the general values of θ\theta .

Complete step by step solution: For the minaR(1,a26a + 11)\,\mathop {\min }\limits_{{\text{a}} \in {\text{R}}} \,(1,\,{{\text{a}}^2}\, - \,6{\text{a}}\,{\text{ + }}\,{\text{11)}}
Let f(a)=a26a+11{\text{f}}({\text{a}})\, = \,{{\text{a}}^2} - 6{\text{a}} + 11
f1(a) = 2a - 6{{\text{f}}^1}{\text{(a)}}\,{\text{ = }}\,{\text{2a - 6}}
For minimum f1(a) = 0{{\text{f}}^1}{\text{(a)}}\,{\text{ = }}\,{\text{0}}

\Rightarrow \,2{\text{a - 6}}\,{\text{ = }}\,{\text{0}} \\\ \Rightarrow \,{\text{a}}\,{\text{ = }}\,{\text{3}} \\\ \end{gathered} $$ At ${\text{a}}\,{\text{ = }}\,{\text{3}}$ we get minimum for f(a) $\therefore \,{\text{f}}(3)\, = \,9 - 18 + 11\, = \,2$ Then among {1,2} minimum is| So $\sin \,\theta - \cos \,\theta \, = \,1$ Let us divide both the sides by $\sqrt 2 $. (Because $\sin \,{45^ \circ }\, = \,\cos \,{45^ \circ }\, = \,\dfrac{1}{{\sqrt 2 }}$ ) $$ \Rightarrow \,\dfrac{{\sin \theta }}{{\sqrt 2 }} - \dfrac{{\cos \,\theta }}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}$$ We know $\sin \,({\text{A}} - {\text{B}})\, = \,\sin \,{\text{A cos B - cos A sin B}}$. Hence $$\begin{gathered} {\text{A}}\, \to \,{\text{0}} \\\ {\text{B}}\, \to \,\dfrac{\pi }{4} \\\ \end{gathered} $$ Then we get $$\sin \,\left( {\theta - \dfrac{\pi }{4}} \right)\, = \,f1\dfrac{1}{{\sqrt 2 }}\, = \,\sin \,\left( {\dfrac{\pi }{4}} \right)$$ For general solution When $\begin{gathered} \sin \,{\theta ^{’}}\, = \,\sin \,{\text{x}} \\\ {\theta ^{’}}\, = \,{\text{n}}\pi {\text{ + ( - 1}}{{\text{)}}^n}{\text{x for n}} \in \,{\text{z}} \\\ {\text{Here }}{\theta ^{’}}\, = \,\theta - \dfrac{\pi }{4} \\\ {\text{and x = }}\dfrac{\pi }{4} \\\ \Rightarrow \,\left( {\theta - \dfrac{\pi }{4}} \right)\, = \,n\pi \, + \,{( - 1)^n}\dfrac{\pi }{4} \\\ \Rightarrow \,\theta = \,n\pi \, + \,{( - 1)^n}\dfrac{\pi }{4} \\\ \end{gathered}$ **Note:** For a quadratic equation whenever the highest degree coefficient is positive there is always a global minima .$\sin \theta - \cos \theta = 1$; This equation can also be solved by squaring on both the sides and using the property ${\sin ^2}\theta + {\cos ^2}\theta = 1$