Question
Question: The most general values of \(\text{ }\\!\\!\theta\\!\\!\text{ }\) for which \(\text{sin }\\!\\!\thet...
The most general values of !!θ!! for which sin !!θ!! -cos !!θ!! =a !!I^!! Rmin(1,a2-6a+10) are given by:
A.n !!π!! +(-1)n4 !!π!! -4 !!π!!
B.n !!π!! +(-1)n4 !!π!! +4 !!π!!
C.2n !!π!! +4 !!π!!
D.None of these
Solution
Try to find out the minimum value of a2- 6a+10 and then form the trigonometric equation.
Complete step-by-step answer:
Let us rewrite a2- 6a+10 as \text{(}{{\text{a}}^{\text{2}}}\text{- 6a+9)}\,\text{+}\,\text{1}$$$=\,{{(\text{a- 3)}}^{2}}\text{+1}$$
Clearly, since $${{\text{(a-3)}}^{\text{2}}}\,\ge \,\text{0}$$, the minimum value {{\text{a}}^{\text{2}}}\text{- 6a+10}cantakeis1,when\text{a}=,3Hence,\underset{\text{a}\in ,\text{R}}{\mathop{\min }},,(1,,{{\text{a}}^{2}}-6\text{a},\text{+},\text{10)}comesouttobe1sinceatitslowestvalue,,\underset{\text{a}\in ,\text{R}}{\mathop{\min }},,(1,,1\text{)}isstill1.Now,constructthetrigonometricfunctionequation.Thatis,\begin{aligned}
& \text{sin }\!\!\theta\!\!\text{ -},\text{cos }\!\!\theta\!\!\text{ },\text{=},\underset{\text{a }\!\!\hat{\mathrm{I}}\!\!\text{ },\text{R}}{\mathop{\text{min}}},,\text{(1,},{{\text{a}}^{\text{2}}}\text{-6a},\text{+},\text{10)} \\
& \Rightarrow ,\text{sin }\!\!\theta\!\!\text{ },\text{-},\text{cos }\!\!\theta\!\!\text{ },\text{=},\text{1} \\
& \Rightarrow ,\text{sin }\!\!\theta\!\!\text{ },\text{=},\text{1+},\text{cos }\!\!\theta\!\!\text{ },
\end{aligned}$
Using the trigonometric identities