Solveeit Logo

Question

Question: The most general value of \(\theta\) satisfying the equation \(\tan \theta = - 1\) and \(\cos \t...

The most general value of θ\theta satisfying the equation

tanθ=1\tan \theta = - 1 and cosθ=12\cos \theta = \frac { 1 } { \sqrt { 2 } }is

A

nπ+7π4n \pi + \frac { 7 \pi } { 4 }

B

nπ+(1)n7π4n \pi + ( - 1 ) ^ { n } \frac { 7 \pi } { 4 }

C

2nπ+7π42 n \pi + \frac { 7 \pi } { 4 }

D

None

Answer

2nπ+7π42 n \pi + \frac { 7 \pi } { 4 }

Explanation

Solution

tanθ=1=tan(2ππ4)\tan \theta = - 1 = \tan \left( 2 \pi - \frac { \pi } { 4 } \right) and cosθ=12=cos(2ππ4)\cos \theta = \frac { 1 } { \sqrt { 2 } } = \cos \left( 2 \pi - \frac { \pi } { 4 } \right)

Hence, general value is 2nπ+(2ππ4)=2nπ+7π42 n \pi + \left( 2 \pi - \frac { \pi } { 4 } \right) = 2 n \pi + \frac { 7 \pi } { 4 }