Solveeit Logo

Question

Question: The moments of inertia of two rotating bodies *A* and *B* are *IA* and *IB (IA* \> *IB).* If their a...

The moments of inertia of two rotating bodies A and B are IA and IB (IA > IB). If their angular momenta are equal, then

A

Kinetic energy of A = Kinetic energy of B

B

Kinetic energy of A > Kinetic energy of B

C

Kinetic energy of A < Kinetic energy of B

D

Kinetic energy of the two bodies cannot be compared with the given data

Answer

Kinetic energy of A < Kinetic energy of B

Explanation

Solution

(Given)

ωAωB=IBIA\therefore \frac { \omega _ { \mathrm { A } } } { \omega _ { \mathrm { B } } } = \frac { \mathrm { I } _ { \mathrm { B } } } { \mathrm { I } _ { \mathrm { A } } } …(i)

Kinetic energy, =12Iω2= \frac { 1 } { 2 } \mathrm { I } \omega ^ { 2 }

(K.E)A(K.E)B=12IAωA212IBωB2\therefore \frac { ( K . E ) _ { A } } { ( K . E ) _ { B } } = \frac { \frac { 1 } { 2 } I _ { A } \omega _ { A } ^ { 2 } } { \frac { 1 } { 2 } I _ { B } \omega _ { B } ^ { 2 } }

(Using(i))

=IBIA= \frac { \mathrm { I } _ { \mathrm { B } } } { \mathrm { I } _ { \mathrm { A } } }

As IA>IB\mathrm { I } _ { \mathrm { A } } > \mathrm { I } _ { \mathrm { B } } (Given)