Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

The moment of inertia of a uniform cylinder of length ll and radius RR about its perpendicular bisector is ll. What is the ratio lR\frac{l}{R} such that the moment of inertia is minimum ?

A

32\sqrt{\frac{3}{2}}

B

32\frac{\sqrt{3}}{2}

C

1

D

32\frac{3}{\sqrt{2}}

Answer

32\sqrt{\frac{3}{2}}

Explanation

Solution

I=mR24+ml212I = \frac{mR^{2}}{4} + \frac{m l^{2}}{12}
I=m4[R2+l23]I = \frac{m}{4} \left[R^{2} + \frac{l^{2}}{3}\right]
=m4[vπl+l23]= \frac{m}{4} \left[\frac{v}{\pi l} + \frac{l^{2}}{3}\right]
dldl=m4[vπl2+2l3]=0\frac{dl}{d l} = \frac{m}{4} \left[ \frac{-v}{\pi l^{2}} + \frac{2 l}{3}\right] = 0
vπl2=2l3\frac{v}{\pi l^{2} } = \frac{2 l}{3}
v=2πl33v= \frac{2\pi l^{3}}{3}
πR2l=2πl33\pi R^{2} l = \frac{2 \pi l^{3}}{3}
l2R2=32\frac{l^{2}}{R^{2}} = \frac{3}{2}
lR=32\frac{l}{R} = \sqrt{\frac{3}{2}}