Solveeit Logo

Question

Question: The moment of inertia of a thin rod of mass M and length L about an axis perpendicular to te rod at ...

The moment of inertia of a thin rod of mass M and length L about an axis perpendicular to te rod at a distance L/4 from one end is:

A

ML26\frac { \mathrm { ML } ^ { 2 } } { 6 }

B

ML212\frac { \mathrm { ML } ^ { 2 } } { 12 }

C

7ML224\frac { 7 \mathrm { ML } ^ { 2 } } { 24 }

D

7ML248\frac { 7 \mathrm { ML } ^ { 2 } } { 48 }

Answer

7ML248\frac { 7 \mathrm { ML } ^ { 2 } } { 48 }

Explanation

Solution

I=Icm+Mx2=ML212+M(L4)2I = I _ { \mathrm { cm } } + M x ^ { 2 } = \frac { M L ^ { 2 } } { 12 } + M \left( \frac { L } { 4 } \right) ^ { 2 } =ML212+ML216=7ML248= \frac { M L ^ { 2 } } { 12 } + \frac { M L ^ { 2 } } { 16 } = \frac { 7 M L ^ { 2 } } { 48 }