Solveeit Logo

Question

Physics Question on Moment Of Inertia

The moment of inertia of a rod about an axis through its centre and perpendicular to it is 112ML2\frac{1}{12} ML ^{2} (where MM is the mass and LL, the length of the rod). The rod is bent in the middle so that the two halves make an angle of 6060^{\circ}. The moment of inertia of the bent rod about the same axis would be :

A

148ML2\frac{1}{48}ML^{2}

B

112ML2\frac{1}{12}ML^{2}

C

124ML2\frac{1}{24}ML^{2}

D

ML283\frac{ML^{2}}{8\sqrt{3}}

Answer

112ML2\frac{1}{12}ML^{2}

Explanation

Solution

Since, rod is bent at the middle, so each part of it will have same length (L2)\left(\frac{ L }{2}\right) and mass (M2)\left(\frac{ M }{2}\right) as shown. Moment of inertia of each part through its one end =13(M2)(L2)2=\frac{1}{3}\left(\frac{ M }{2}\right)\left(\frac{ L }{2}\right)^{2} Hence, net moment of inertia through its middle point OO is I=13(M2)(L2)2+13(M2)(L2)2I =\frac{1}{3}\left(\frac{ M }{2}\right)\left(\frac{ L }{2}\right)^{2}+\frac{1}{3}\left(\frac{ M }{2}\right)\left(\frac{ L }{2}\right)^{2} =13[ML28+ML28]=ML212=\frac{1}{3}\left[\frac{ ML ^{2}}{8}+\frac{ ML ^{2}}{8}\right]=\frac{ ML ^{2}}{12}