Solveeit Logo

Question

Question: The molecules of a given mass of gas have root mean square speeds of 100 m s–1 at 27 °C and 1 atmosp...

The molecules of a given mass of gas have root mean square speeds of 100 m s–1 at 27 °C and 1 atmospheric pressure. The root mean square speeds of the molecules of the gas at 127 °c and 2 atmospheric pressure is

A

2003\frac{200}{\sqrt{3}}

B

1003\frac{100}{\sqrt{3}}

C

4003\frac{400}{3}

D

2003\frac{200}{3}

Answer

2003\frac{200}{\sqrt{3}}

Explanation

Solution

Here

Vrms1=100ms1,T1=27C=(27+273)L=300KV_{rms1} = 100ms^{- 1},T_{1} = 27{^\circ}C = (27 + 273)L = 300KP2=2atmP_{2} = 2atm

FromP1V1T1=P2V2T2;V1V2=P2P1T1T2=2×30040032\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}};\frac{V_{1}}{V_{2}} = \frac{P_{2}}{P_{1}}\frac{T_{1}}{T_{2}} = 2 \times \frac{300}{400}\frac{3}{2}

Again P1=13MV1v2rms1P_{1} = \frac{1}{3}\frac{M}{V_{1}}{v^{2}}_{rms1}and P2=13MVv2rms2P_{2} = \frac{1}{3}\frac{M}{V}{v^{2}}_{rms_{2}}

V2rms2V2rms1×V1V2=P2P1\therefore\frac{{V^{2}}_{rms_{2}}}{{V^{2}}_{rms_{1}}} \times \frac{V_{1}}{V_{2}} = \frac{P_{2}}{P_{1}}

V2rms2=v2rms1×P2P1×V2V1=(100)2×2×23{V^{2}}_{rms_{2}} = {v^{2}}_{rms_{1}} \times \frac{P_{2}}{P_{1}} \times \frac{V_{2}}{V_{1}} = (100)^{2} \times 2 \times \frac{2}{3}

Vrms2=2003ms1V_{rms_{2}} = \frac{200}{\sqrt{3}}ms^{- 1}