Solveeit Logo

Question

Question: The molecular weight of \({{\text{O}}_{\text{2}}}\)and \({{\text{N}}_{\text{2}}}\) are 32 and 28 res...

The molecular weight of O2{{\text{O}}_{\text{2}}}and N2{{\text{N}}_{\text{2}}} are 32 and 28 respectively. At 15oC{\text{1}}{{\text{5}}^{\text{o}}}{\text{C}}, the pressure of 1 gm O2{{\text{O}}_{\text{2}}} will be the same as that of 1gm N2{{\text{N}}_{\text{2}}} in the same bottle at the temperature?
A. - 210C{\text{ - 2}}{{\text{1}}^{\text{0}}}{\text{C}}
B. - 130C{\text{ - 1}}{{\text{3}}^{\text{0}}}{\text{C}}
C.150C{\text{1}}{{\text{5}}^{\text{0}}}{\text{C}}
D.56.4 V

Explanation

Solution

According to Gay Lussac’s law, Pressure exerted is directly proportional to temperature. According to Boyle’s law, at a constant temperature, the volume of a given gas is inversely proportional to pressure V1P{V\propto }\dfrac{{\text{1}}}{{\text{P}}}. According to Charle’s law, the volume is directly proportional to temperature at constant pressure VT{V\propto T}. Number of moles, n1 = given mass of O2molar mass{{\text{n}}_{\text{1}}}{\text{ = }}\dfrac{{{\text{given mass of }}{{\text{O}}_{\text{2}}}}}{{{\text{molar mass}}}}

Complete step by step answer:
Here, we have to find out the temperature at which the pressure of O2{{\text{O}}_{\text{2}}} and N2{{\text{N}}_{\text{2}}}, each of them taken 1 gram is the same.
In the question, the temperature of O2{{\text{O}}_{\text{2}}} when it is equal to the pressure of N2{{\text{N}}_{\text{2}}} is given
Temperature of O2T1 = 150C{\text{Temperature of }}{{\text{O}}_2}{\text{, }}{{\text{T}}_1}{\text{ = 1}}{{\text{5}}^{\text{0}}}{\text{C}}
Now, convert temperature to Kelvin, so Temperature of O2 = 150 + 273 = 298K{\text{Temperature of }}{{\text{O}}_{\text{2}}}{\text{ = 1}}{{\text{5}}^{\text{0}}}{\text{ + 273 = 298K}}
We have to find the temperature of N2{{\text{N}}_{\text{2}}} and can be taken as y
We know that according to Gay Lussac’s law, Pressure exerted is directly proportional to temperature. We also know that pressure is the same, Pressure is directly proportional to the number of moles.
PαnT{\text{P}}\alpha {\text{nT}}
So, we have P1P2 = n1T1n2T2\dfrac{{{{\text{P}}_{\text{1}}}}}{{{{\text{P}}_{\text{2}}}}}{\text{ = }}\dfrac{{{{\text{n}}_{\text{1}}}{{\text{T}}_{\text{1}}}}}{{{{\text{n}}_{\text{2}}}{{\text{T}}_{\text{2}}}}}
Since in this particular question pressure of both of it are at the same pressure P1P2 = 1\dfrac{{{{\text{P}}_{\text{1}}}}}{{{{\text{P}}_{\text{2}}}}}{\text{ = 1}}
Therefore, 1 = n1T1n2T2{\text{1 = }}\dfrac{{{{\text{n}}_{\text{1}}}{{\text{T}}_{\text{1}}}}}{{{{\text{n}}_{\text{2}}}{{\text{T}}_{\text{2}}}}}
Thus, n1T1 = n2T2{{\text{n}}_{\text{1}}}{{\text{T}}_{\text{1}}}{\text{ = }}{{\text{n}}_{\text{2}}}{{\text{T}}_{\text{2}}}
Here, n1 = given mass of O2molar mass{{\text{n}}_{\text{1}}}{\text{ = }}\dfrac{{{\text{given mass of }}{{\text{O}}_{\text{2}}}}}{{{\text{molar mass}}}}
n1 = 132{{\text{n}}_{\text{1}}}{\text{ = }}\dfrac{1}{{32}} and n2 = 128{{\text{n}}_{\text{2}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{28}}}}
We know T1{{\text{T}}_{\text{1}}} is 298K, we need to find T2{{\text{T}}_{\text{2}}}, the temperature of N2{{\text{N}}_{\text{2}}}.
n1T1 = n2T2{{\text{n}}_{\text{1}}}{{\text{T}}_{\text{1}}}{\text{ = }}{{\text{n}}_{\text{2}}}{{\text{T}}_{\text{2}}}
132×298=128×y\dfrac{{\text{1}}}{{{\text{32}}}}{\times 298 = }\dfrac{{\text{1}}}{{{\text{28}}}}{\times y}
Therefore, y = 2832×298{\text{y = }}\dfrac{{{\text{28}}}}{{{\text{32}}}}{\times 298}
y = 260.75K{\text{y = 260}}{\text{.75K}}
Now since the options are given in degree Celsius, y = (260.75 - 273)0C{\text{y = (260}}{\text{.75 - 273}}{{\text{)}}^0}C
y = - 130C{\text{y = - 1}}{{\text{3}}^{\text{0}}}{\text{C}}
Therefore, the correct option is (B) .

Note: To convert temperature in degree Celsius to Kelvin, added a 273 to it. To convert temperature in Kelvin into degree Celsius, subtracted a 273 from it. From these gas laws, the Ideal gas equation can be derived, PV= nRT. If the question is about a constant temperature instead of constant pressure as here, we need to consider Boyle’s law.