Solveeit Logo

Question

Question: The molecular diameter of A & B are 4 nm and 8 nm respectively. The pressure of A and B are 10 atm a...

The molecular diameter of A & B are 4 nm and 8 nm respectively. The pressure of A and B are 10 atm and 5 atm respectively. The temperature of A and B are 300 K and 400 K respectively. The ratio of molecular mass of A and B are 30 : 40. What will be the ratio of binary collisions among A molecules to that of B molecules ?

A

5057\frac{50}{57}

B

2921\frac{29}{21}

C

169\frac{16}{9}

D

4936\frac{49}{36}

Answer

169\frac{16}{9}

Explanation

Solution

Z11 = 12\frac{1}{\sqrt{2}} p s2 uavg N*2 where Z11 = total no. of binary collisions

or Z11 = 12\frac{1}{\sqrt{2}} p s2 × 8RTπM\sqrt{\frac{8RT}{\pi M}} × P2NA2R2T2\frac{P^{2}N_{A}^{2}}{R^{2}T^{2}}

PV = NNA\frac{N}{N_{A}} RT

or NV\frac{N}{V} = PNART\frac{PN_{A}}{RT} = N*

or Z11 µ σ2×P2M×T3/2\frac{\sigma^{2} \times P^{2}}{\sqrt{M} \times T^{3/2}}

\(Z11)A(Z11)B\frac{(Z_{11})_{A}}{(Z_{11})_{B}} = σA2σB2\frac { \sigma _ { \mathrm { A } } ^ { 2 } } { \sigma _ { \mathrm { B } } ^ { 2 } } × PA2PB2\frac { \mathrm { P } _ { \mathrm { A } } ^ { 2 } } { \mathrm { P } _ { \mathrm { B } } ^ { 2 } } × MBMA\sqrt{\frac{M_{B}}{M_{A}}} × (TBTA)3/2\left( \frac{T_{B}}{T_{A}} \right)^{3/2}

or (Z11)A(Z11)B\frac{(Z_{11})_{A}}{(Z_{11})_{B}} = 14\frac{1}{4} × 4 × 43\sqrt{\frac{4}{3}} × (43)3/2\left( \frac{4}{3} \right)^{3/2}

= (43)2\left( \frac{4}{3} \right)^{2}= 169\frac{16}{9}