Solveeit Logo

Question

Question: The molarity of \( {H_2}S{O_4} \) is \( 0.8{\text{ M}} \) and its density is \( 1.06{\text{ g c}}{{\...

The molarity of H2SO4{H_2}S{O_4} is 0.8 M0.8{\text{ M}} and its density is 1.06 g cm31.06{\text{ g c}}{{\text{m}}^{ - 3}} . What will be the concentration of the solution in terms of molality and mole fraction. Calculate the molarity of water if its density is 1000 kg m31000{\text{ kg }}{{\text{m}}^{ - 3}} .

Explanation

Solution

Hint : We can find out the mole fraction and molality of the solution by finding out the masses of the H2SO4{H_2}S{O_4} present in the solution and the mass of solvent. The mass can be obtained by using the given densities of H2SO4{H_2}S{O_4} and water. With the help of molarity we can find the mass of H2SO4{H_2}S{O_4} .
1.1. Number of moles = given mass of solutemolar mass of solute= {\text{ }}\dfrac{{given{\text{ mass of solute}}}}{{molar{\text{ }}mass{\text{ }}of{\text{ }}solute}}
2.2. Density = given mass volume of solution= {\text{ }}\dfrac{{given{\text{ mass }}}}{{volume{\text{ of solution}}}}
3.3. Mole Fraction of solute = moles of solutemoles of solute + moles of solvent= {\text{ }}\dfrac{{moles{\text{ of solute}}}}{{moles{\text{ of solute + moles of solvent}}}}
4.4. Molality of solution = moles of soutemass of water= {\text{ }}\dfrac{{moles{\text{ of soute}}}}{{mass{\text{ of water}}}}

Complete Step By Step Answer:
Firstly we will find out the amount of mass of H2SO4{H_2}S{O_4} present in the solution. Since the molarity of H2SO4{H_2}S{O_4} is 0.8 M0.8{\text{ M}} . Molarity is the ratio of moles and volume of solution. Therefore it can be written as 0.8 mol L10.8{\text{ mol }}{{\text{L}}^{ - 1}} . Assuming the volume be unit litre. The moles of H2SO4{H_2}S{O_4} are now 0.8 mol 0.8{\text{ mol }} .
We know that,
Number of moles = given mass of solutemolar mass of solute= {\text{ }}\dfrac{{given{\text{ mass of solute}}}}{{molar{\text{ }}mass{\text{ }}of{\text{ }}solute}}
Molar mass of H2SO4{H_2}S{O_4} can be calculated as: (1 × 2) + 32 + (4 ×16) g = 98 g\left( {1{\text{ }} \times {\text{ 2}}} \right){\text{ + 32 + }}\left( {4{\text{ }} \times {\text{16}}} \right){\text{ g = 98 g}}
Now,
mass of H2SO4{H_2}S{O_4} == moles of H2SO4{H_2}S{O_4} ×\times molar mass of H2SO4{H_2}S{O_4}
= 0.8 × 98 g= {\text{ 0}}{\text{.8 }} \times {\text{ 98 g}}
= 78.4 g= {\text{ 78}}{\text{.4 g}}
Now we will find out the mass of solution:
We know that,
Density = given mass volume of solution= {\text{ }}\dfrac{{given{\text{ mass }}}}{{volume{\text{ of solution}}}}
Density is 1.06 g cm31.06{\text{ g c}}{{\text{m}}^{ - 3}} and the volume of solution is = 1000 cm3= {\text{ 1000 c}}{{\text{m}}^3}
Therefore the mass can be calculated as,
Mass of the solution == density of solution ×\times volume of solution
= 1.06 × 1000 g= {\text{ 1}}{\text{.06 }} \times {\text{ 1000 g}}
= 1060 g= {\text{ 1060 g}}
Since the solution comprises both H2SO4{H_2}S{O_4} and the water. We will now find the mass of water which is,
Mass of water == Mass of solution - Mass of H2SO4{H_2}S{O_4}
= 1060 - 78.4 g= {\text{ 1060 - 78}}{\text{.4 g}}
= 981.6 g= {\text{ 981}}{\text{.6 g}}
Molality of solution = moles of soutemass of water= {\text{ }}\dfrac{{moles{\text{ of soute}}}}{{mass{\text{ of water}}}}
= 0.80.981 mol kg1= {\text{ }}\dfrac{{0.8}}{{0.981}}{\text{ mol k}}{{\text{g}}^{ - 1}}
= 0.815 mol kg1= {\text{ 0}}{\text{.815 mol k}}{{\text{g}}^{ - 1}}
We know that,
Mole fraction of H2SO4{H_2}S{O_4} = moles of solutemoles of solute + moles of solvent= {\text{ }}\dfrac{{moles{\text{ of solute}}}}{{moles{\text{ of solute + moles of solvent}}}}
Here the solvent is water, so we have to replace it with moles of water.
Mole fraction of H2SO4{H_2}S{O_4} = 0.8 mol0.8 mol + 98.618mol= {\text{ }}\dfrac{{0.8{\text{ mol}}}}{{0.8{\text{ mol + }}\dfrac{{98.6}}{{18}}mol}}
Mole fraction of H2SO4{H_2}S{O_4} = 0.8 mol0.8 mol + 54.5 mol= {\text{ }}\dfrac{{0.8{\text{ mol}}}}{{0.8{\text{ mol + 54}}{\text{.5 }}mol}}
Mole fraction of H2SO4{H_2}S{O_4} = 0.014= {\text{ 0}}{\text{.014}}
Also if density of water is 1000 kg m31000{\text{ kg }}{{\text{m}}^{ - 3}} then its molarity is given by,
Molarity = 1000 18M= {\text{ }}\dfrac{{1000{\text{ }}}}{{18}}{\text{M}}
= 55.5 M= {\text{ 55}}{\text{.5 M}}

Note :
The mole fraction is calculated specifically for solute and solvent. Here we calculate it for the solute. Mole fractions do not have any units because it is a ratio of two same quantities. For finding molality we do not take care of the volume of the solution. We can take volume as unity when we have to calculate moles from molarity.