Solveeit Logo

Question

Question: The molal elevation constant of water is \[0.51\]. The boiling point of \[0.1\] molal aqueous \[{\te...

The molal elevation constant of water is 0.510.51. The boiling point of 0.10.1 molal aqueous NaCl{\text{NaCl}} solution is nearly:
(A) 100.05 C100.05{\text{ }}^\circ {\text{C}}
(B) 100.1 C100.1{\text{ }}^\circ {\text{C}}
(C) 100.2 C100.2{\text{ }}^\circ {\text{C}}
(D) 101.0 C101.0{\text{ }}^\circ {\text{C}}

Explanation

Solution

When any non volatile solute is mixed in a solvent, it increases the boiling point of solvent. Using the given molal elevation constant of water and the molality of solution, we can find the increase in boiling point.

Formula Used:
ΔTb=iKbm\Delta {T_b} = i \cdot {K_b} \cdot m

Complete step by step answer:
It is given that:
Molal elevation constant of water, Kb=0.51 K kg mol1{K_b} = 0.51{\text{ K kg mo}}{{\text{l}}^{ - 1}}
Molality of aqueous solution, m=0.1 mol kg1m = 0.1{\text{ mol k}}{{\text{g}}^{ - 1}}
NaCl{\text{NaCl}}is a strong electrolyte and it dissociates in water as:
NaClNa++Cl{\text{NaCl}} \to {\text{N}}{{\text{a}}^ + } + {\text{C}}{{\text{l}}^ - }
One molecule of NaCl{\text{NaCl}} produces two particles in the solution.
Thus, van’t Hoff factor, i=2i = 2
Increase in boiling point, ΔTb=?\Delta {T_b} = ?
Relationship between above four quantities is:
ΔTb=iKbm\Delta {T_b} = i \cdot {K_b} \cdot m
Putting the values of Kb{K_b}, mm and ii in this expression, we get:
ΔTb=2×0.51×0.1 K\Delta {T_b} = 2 \times 0.51 \times 0.1{\text{ K}}
Solving the above expression:
ΔTb=0.102 K\Delta {T_b} = 0.102{\text{ K}}
This numerical value of difference of temperature will remain the same in any temperature scale. Thus, we can also write, ΔTb=0.102 C\Delta {T_b} = 0.102{\text{ }}^\circ {\text{C}}
Now, at standard conditions, the boiling point of pure water, Tb0=100 CT_b^0 = 100{\text{ }}^\circ {\text{C}}
Boiling point of solution, Tb=Tb0+ΔTb{T_b} = T_b^0 + \Delta {T_b}
Substituting the values of Tb0T_b^0 and ΔTb\Delta {T_b}, we get:
Tb=(100+0.102) C{T_b} = (100 + 0.102){\text{ }}^\circ {\text{C}}
Tb=100.102 C\Rightarrow {T_b} = 100.102{\text{ }}^\circ {\text{C}}
Rounding off the above value upto one decimal place, we get:
Tb=100.1 C{T_b} = 100.1{\text{ }}^\circ {\text{C}}

Hence, the correct option is (B).

Note: In case of non-electrolyte solutions, we can take the value of van’t Hoff factor, i=1i = 1. But in this example, we cannot ignore the value of ii.
We have calculated the elevation in boiling point (difference of temperature) as 0.102 K{\text{0}}{\text{.102 K}}. The numerical value of this difference of temperature will remain the same in any temperature scale. For instance, if we want to calculate in centigrade scale:ΔTb=100.102 C100 C=0.102 C\Delta {T_b} = 100.102{\text{ }}^\circ {\text{C}} - 100{\text{ }}^\circ {\text{C}} = 0.102{\text{ }}^\circ {\text{C}}