Solveeit Logo

Question

Question: The modulus of the complex number \(\frac{(1 - i\sqrt{3})(\cos\theta + i\sin\theta)}{2(1 - i)(\cos\t...

The modulus of the complex number (1i3)(cosθ+isinθ)2(1i)(cosθisinθ)\frac{(1 - i\sqrt{3})(\cos\theta + i\sin\theta)}{2(1 - i)(\cos\theta - i\sin\theta)}is

A

12\frac{1}{\sqrt{2}}

B

122\frac{1}{2\sqrt{2}}

C

13\frac{1}{\sqrt{3}}

D

None of these

Answer

12\frac{1}{\sqrt{2}}

Explanation

Solution

Sol. 1i3.cosθ+isinθ2.1i.cosθisinθ=1+3.cos2θ+sin2θ21+1.cos2θ+sin2θ=12\frac{|1 - i\sqrt{3}|.|\cos\theta + i\sin\theta|}{|2|.|1 - i|.|\cos\theta - i\sin\theta|} = \frac{\sqrt{1 + 3}.\sqrt{\cos^{2}\theta + \sin^{2}\theta}}{2\sqrt{1 + 1}.\sqrt{\cos^{2}\theta + \sin^{2}\theta}} = \frac{1}{\sqrt{2}}