Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

The modulus of 1i3+i+4i5\frac{1-i}{3+i}+\frac{4i}{5} is

A

5\sqrt{5} unit

B

115\frac{\sqrt{11}}{5} unit

C

55\frac{\sqrt{5}}{5} unit

D

125\frac{\sqrt{12}}{5} unit

Answer

55\frac{\sqrt{5}}{5} unit

Explanation

Solution

Let assume :
z=1i3+i+4i5z=\frac{1-i}{3+i}+\frac{4i}{5}
55i+12i45(3+i)=i+7i5(3+i)⇒\frac{5-5i+12i-4}{5(3+i)}=\frac{i+7i}{5(3+i)}
=(1+7i)(3i)5(9+1)=\frac{(1+7i)(3-i)}{5(9+1)}
=10+20i50=i+2i5=\frac{10+20i}{50}=\frac{i+2i}{5}
Therefore, z=(15)2+(25)2|z|=\sqrt{(\frac{1}{5})^2+(\frac{2}{5})^2}
=151+4=55=\frac{1}{5}\sqrt{1+4}=\frac{\sqrt5}{5}
So, the correct option is (C) : 55\frac{\sqrt{5}}{5} unit