Solveeit Logo

Question

Mathematics Question on complex numbers

The modulus and amplitude of 1+2i1(1i)2\frac{ 1 + 2i}{1 - (1 - i)^2} are respectively

A

1,π3 1, \frac{\pi}{3}

B

2,π6 \sqrt{2} , \frac{\pi}{6}

C

1,01, 0

D

3,0\sqrt{3} , 0

Answer

1,01, 0

Explanation

Solution

Let Z=1+2i1(1i)2Z = \frac{ 1 + 2i}{1 - (1 - i)^2}
=1+2i1(1+i22i)=1+2i1+2i=1Z=1+0i= \frac{1+2i}{1-\left(1 + i^{2} - 2i\right)} = \frac{1+2i}{1+2i} = 1 \Rightarrow Z = 1 + 0i
Now, put 1=rcosθ,0=rsinθ1 = r \cos \theta , 0 = r \sin \theta
r=1+0=1Z=a2+b2=12+0=1r= \sqrt{1+0} = 1 \Rightarrow \left|Z\right| = \sqrt{a^{2} + b^{2}} = \sqrt{1^{2}+0} = 1
tanθ=0θ=0\therefore \:\:\: \tan \theta = 0 \Rightarrow \theta = 0
\therefore Modulus is 1 and amplitude is 0.