Solveeit Logo

Question

Question: The mirror image of the curve \[\arg \left( {\dfrac{{z + i}}{{z - 1}}} \right) = \dfrac{\pi }{4}\], ...

The mirror image of the curve arg(z+iz1)=π4\arg \left( {\dfrac{{z + i}}{{z - 1}}} \right) = \dfrac{\pi }{4}, i=1i = \sqrt { - 1} in the line xy=0x - y = 0 is
A.arg(z+iz+1)=π4\arg \left( {\dfrac{{z + i}}{{z + 1}}} \right) = \dfrac{\pi }{4}
B.arg(z+1zi)=π4\arg \left( {\dfrac{{z + 1}}{{z - i}}} \right) = \dfrac{\pi }{4}
C.arg(ziz+1)=π4\arg \left( {\dfrac{{z - i}}{{z + 1}}} \right) = \dfrac{\pi }{4}
D.arg(z+iz1)=π4\arg \left( {\dfrac{{z + i}}{{z - 1}}} \right) = \dfrac{\pi }{4}

Explanation

Solution

First, we will replace zˉ\bar z for zz in the given equation and then we will use the property of the argument of conjugate of complex numbers, arg(zˉ)=arg(z)\arg \left( {\bar z} \right) = - \arg \left( z \right). Then we will simplify the obtained expression to find the mirror image.

Complete step-by-step answer:
We are given that the curve arg(z+iz1)=π4\arg \left( {\dfrac{{z + i}}{{z - 1}}} \right) = \dfrac{\pi }{4}, i=1i = \sqrt { - 1} .
We know that the mirror image of any complex number z=a+ibz = a + ib on the real axis is the conjugate of zz, i.e., z=aib\overline z = a - ib.
Now, for determining the mirror image of the curve, we will replace zˉ\bar z for zz in the given equation, we get
arg(zˉ+izˉ1)=π4\Rightarrow \arg \left( {\dfrac{{\bar z + i}}{{\bar z - 1}}} \right) = \dfrac{\pi }{4}
Using the property of the argument of conjugate of complex numbers, arg(zˉ)=arg(z)\arg \left( {\bar z} \right) = - \arg \left( z \right) in the above equation, we get

arg(z+iz1)=π4 arg((zi)(z+1))=π4 arg(ziz+1)=π4  \Rightarrow \arg \left( {\dfrac{{ - z + i}}{{ - z - 1}}} \right) = \dfrac{\pi }{4} \\\ \Rightarrow \arg \left( {\dfrac{{ - \left( {z - i} \right)}}{{ - \left( {z + 1} \right)}}} \right) = \dfrac{\pi }{4} \\\ \Rightarrow \arg \left( {\dfrac{{z - i}}{{z + 1}}} \right) = \dfrac{\pi }{4} \\\

Therefore, we have found that the mirror image of the curve is arg(ziz+1)=π4\arg \left( {\dfrac{{z - i}}{{z + 1}}} \right) = \dfrac{\pi }{4}.

Hence, option C is correct.

Note: In such problems, you may get confused amongst the properties used. We can also solve this question using the property of argument of complex numbers like arg(z1z2)=arg(z2z1)\arg \left( {\dfrac{{{z_1}}}{{{z_2}}}} \right) = - \arg \left( {\dfrac{{{z_2}}}{{{z_1}}}} \right). The mirror image is when we draw a curve, for example the given curve is a circle and it lies in the first quadrant, then its mirror image lies in the 4th quadrant. So the coordinate of xx–axis will remain the same but the coordinate on the yy–axis will change its sign.