Solveeit Logo

Question

Question: The minimum value of x log x is equal to. A. e B. \(\dfrac{1}{e}\) C. \(-\dfrac{1}{e}\) D.\...

The minimum value of x log x is equal to.
A. e
B. 1e\dfrac{1}{e}
C. 1e-\dfrac{1}{e}
D.2e\dfrac{2}{e}

Explanation

Solution

Hint: We can use the product rule of differentiation, given by d(u.v)dx=vd(u)dx+ud(v)dx\dfrac{d\left( u.v \right)}{dx}=\dfrac{vd\left( u \right)}{dx}+\dfrac{ud\left( v \right)}{dx} . Then we can find the minimum value for x log x. For finding minimum value, we can equate dydx=0\dfrac{dy}{dx}=0 . We can also use some basic logarithm formula to make the solution short and simple. We can use the below formulas:
y=logx ey=x logxlogy=log(xy) d(logx)dx=1x \begin{aligned} & y=\log x \\\ & {{e}^{y}}=x \\\ & \log x-\log y=\log \left( \dfrac{x}{y} \right) \\\ & \dfrac{d\left( \log x \right)}{dx}=\dfrac{1}{x} \\\ \end{aligned}

Complete step-by-step answer:
It is given in the question that we have to find out the minimum value of x log x.
Let us assume that,
y = x log x …………………(i)

We know that the product rule of differentiation is given by;
d(u.v)dx=vd(u)dx+ud(v)dx\dfrac{d\left( u.v \right)}{dx}=\dfrac{vd\left( u \right)}{dx}+\dfrac{ud\left( v \right)}{dx}
We can use this basic differentiation on equation (i) with respect to x. We can also apply d(logx)dx=1x\dfrac{d\left( \log x \right)}{dx}=\dfrac{1}{x} . So, we will get,
dydx=logxd(x)dx+xd(logx)dx dydx=logx.1+xx dydx=logx+1...........(ii) \begin{aligned} & \dfrac{dy}{dx}=\log x\dfrac{d\left( x \right)}{dx}+x\dfrac{d\left( \log x \right)}{dx} \\\ & \dfrac{dy}{dx}=\log x.1+\dfrac{x}{x} \\\ & \dfrac{dy}{dx}=\log x+1...........\left( ii \right) \\\ \end{aligned}

We know that log e = 1 from basic logarithm. So, replacing 1 as loge\log e in equation (ii), we get;
dydx=logx+loge.........(iii)\dfrac{dy}{dx}=\log x+\log e.........\left( iii \right)
From basic logarithm formula, we have loga+logb=log(ab)\log a+\log b=\log \left( ab \right). Using this basic logarithmic formula in equation (iii), we get;
dydx=log(ex)\dfrac{dy}{dx}=\log \left( ex \right)

Now to find the minimum value, we will equate dydx\dfrac{dy}{dx}value to 0.
If dydx=0\dfrac{dy}{dx}=0, then it is minimum.

Now form calculus we know that to know which point is maximum and which point is minimum we have to double derivative the function. If the sign f’’ (x) is positive, then it is a point of minimum and if the sign is negative then it is a point of maximum.
So, to find a minimum dydx\dfrac{dy}{dx} must be equal to 0.
dydx=logex=0 or logex=0 \begin{aligned} & \dfrac{dy}{dx}=\log ex=0 \\\ & or \\\ & \log ex=0 \\\ \end{aligned}

From basic logarithmic formula, if y = log a, then ey=a{{e}^{y}}=a. So, applying this in log ex = 0, we get;
ex=e0....................(iv)\Rightarrow ex={{e}^{0}}....................\left( iv \right)
Also, we know that the value of e0=1.{{e}^{0}}=1. So, putting the value of e0=1{{e}^{0}}=1in equation (iv), we get;
ex=1 x=1e \begin{aligned} & \Rightarrow ex=1 \\\ & \Rightarrow x=\dfrac{1}{e} \\\ \end{aligned}

Now double differentiating equation (i), with respect to x, we get;
y = log ex
From the first differentiation, which we have already calculated, we have;
dydx=logx+loge or dydx=logex \begin{aligned} & \dfrac{dy}{dx}=\log x+\log e \\\ & or \\\ & \dfrac{dy}{dx}=\log ex \\\ \end{aligned}

Again differentiating dydx\dfrac{dy}{dx} with respect to x, we get;
d2ydx2=1ex×e d2ydx2=1x....................(v) \begin{aligned} & \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{1}{ex}\times e \\\ & \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{1}{x}....................\left( v \right) \\\ \end{aligned}

Also, we have already calculated the value of x=1ex=\dfrac{1}{e} .
Putting the value of x in equation (v), we get,
d2ydx2=e............(vi)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=e............\left( vi \right)
So, from equation (vi) it is clear that e > 0. So, at x=1ex=\dfrac{1}{e}, the value of y is minimum. So, on putting the value of x=1ex=\dfrac{1}{e} in xlogxx\log x from this calculation of x=1ex=\dfrac{1}{e} we get,
xlogx=1elog1ex\log x=\dfrac{1}{e}\log \dfrac{1}{e}

As, 1e\dfrac{1}{e} can be written as e1{{e}^{-1}}, we get,
=1eloge1 =1eloge............(vii) \begin{aligned} & =\dfrac{1}{e}\log {{e}^{-1}} \\\ & =\dfrac{-1}{e}\log e............\left( vii \right) \\\ \end{aligned}

We know that the value of log e = 1. So, on putting the value of log e = 1 in equation (vii), we get,
=1e×1 =1e \begin{aligned} & =\dfrac{-1}{e}\times 1 \\\ & =\dfrac{-1}{e} \\\ \end{aligned}

Thus, from this, we have the minimum value of xlogxx\log x is equal to 1e\dfrac{-1}{e} , and option (C) is the correct answer.

Note: Make sure to learn all the logarithm formulas to solve this type of questions. Especially in this question using log (x) = y then (e)y=x{{\left( e \right)}^{y}}=x is the most confusing part but without using this formula the solution may become too difficult to solve.