Solveeit Logo

Question

Mathematics Question on Algebra

The minimum value of x2+1xx^2 + \frac{1}{x} is:

A

(4)23+2(4)^{\frac{2}{3}} + 2

B

6+(2)136 + (2)^{\frac{1}{3}}

C

(12)13+5\left(\frac{1}{2}\right)^{\frac{1}{3}} + 5

D

(12)23+(2)13\left(\frac{1}{2}\right)^{\frac{2}{3}} + (2)^{\frac{1}{3}}

Answer

(12)23+(2)13\left(\frac{1}{2}\right)^{\frac{2}{3}} + (2)^{\frac{1}{3}}

Explanation

Solution

Solution: We are tasked with finding the minimum value of the function:

f(x)=x2+1x,x>0f(x) = x^2 + \frac{1}{x}, \quad x > 0

Differentiating f(x)f(x): To find the critical points, compute the derivative of f(x)f(x):

f(x)=2x1x2f'(x) = 2x - \frac{1}{x^2}

Set f(x)=0f'(x) = 0:

2x=1x22x = \frac{1}{x^2}

Multiply through by x2x^2 (since x>0x > 0):

2x3=1    x3=12    x=(12)132x^3 = 1 \implies x^3 = \frac{1}{2} \implies x = (\frac{1}{2})^{\frac{1}{3}}

Computing f(x)f(x) at x=(12)13x = (\frac{1}{2})^{\frac{1}{3}}: Substitute x=(12)13x = (\frac{1}{2})^{\frac{1}{3}} into f(x)f(x):

f((12)13)=((12)13)2+1(12)13f\left((\frac{1}{2})^{\frac{1}{3}}\right) = \left((\frac{1}{2})^{\frac{1}{3}}\right)^2 + \frac{1}{(\frac{1}{2})^{\frac{1}{3}}}

Simplify each term:

  1. The first term is:
  2. The second term is:

Thus, the minimum value is:

f(x)=(12)23+(2)13f(x) = (\frac{1}{2})^{\frac{2}{3}} + (2)^{\frac{1}{3}}

Verifying it is a minimum: The second derivative of f(x)f(x) is:

f(x)=2+2x3f''(x) = 2 + \frac{2}{x^3}

Since f(x)>0f''(x) > 0 for all x>0x > 0, f(x)f(x) is convex, and the critical point corresponds to a minimum.

Thus, the minimum value is:

(12)23+(2)13\left(\frac{1}{2}\right)^{\frac{2}{3}} + (2)^{\frac{1}{3}}