Solveeit Logo

Question

Question: The minimum value of the sum of real numbers \({a^{ - 5}}, {a^{ - 4}}, 3{a^{ - 3}}, 1, {a^8}, {a^{10...

The minimum value of the sum of real numbers a5,a4,3a3,1,a8,a10{a^{ - 5}}, {a^{ - 4}}, 3{a^{ - 3}}, 1, {a^8}, {a^{10}} with a>0a > 0 is
A) 6
B) 7
C) 8
D) 9

Explanation

Solution

The inequality of arithmetic and geometric means states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same list i.e.,AMGMAM \geqslant GM.
For two positive real numbers xx and yy, AM is x+y2\dfrac{{x + y}}{2} and GM is (xy)12{\left( {xy} \right)^{\dfrac{1}{2}}}.

Complete step-by-step answer:
Given real numbers are a5,a4,3a3,1,a8,a10{a^{ - 5}},{a^{ - 4}},3{a^{ - 3}},1,{a^8},{a^{10}} with a>0a > 0 .It means a5,a4,3a3,1,a8,a10{a^{ - 5}},{a^{ - 4}},3{a^{ - 3}},1,{a^8},{a^{10}} >0 > 0
The inequality of arithmetic and geometric means states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same list i.e.,AMGMAM \geqslant GM.
AM of the given numbers= 1a5+1a4+1a3+1a3+1a3+1+a8+a108\dfrac{{\dfrac{1}{{{a^5}}} + \dfrac{1}{{{a^4}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + 1 + {a^8} + {a^{10}}}}{8}
GM of given numbers= (1a5×1a4×1a3×1a3×1a3×1×a8×a10)18{\left( {\dfrac{1}{{{a^5}}} \times \dfrac{1}{{{a^4}}} \times \dfrac{1}{{{a^3}}} \times \dfrac{1}{{{a^3}}} \times \dfrac{1}{{{a^3}}} \times 1 \times {a^8} \times {a^{10}}} \right)^{\dfrac{1}{8}}}
Now, putting the value in the relation:AMGMAM \geqslant GM
1a5+1a4+1a3+1a3+1a3+1+a8+a108\dfrac{{\dfrac{1}{{{a^5}}} + \dfrac{1}{{{a^4}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + 1 + {a^8} + {a^{10}}}}{8} \geqslant (1a5×1a4×1a3×1a3×1a3×1×a8×a10)18{\left( {\dfrac{1}{{{a^5}}} \times \dfrac{1}{{{a^4}}} \times \dfrac{1}{{{a^3}}} \times \dfrac{1}{{{a^3}}} \times \dfrac{1}{{{a^3}}} \times 1 \times {a^8} \times {a^{10}}} \right)^{\dfrac{1}{8}}}
\Rightarrow 1a5+1a4+1a3+1a3+1a3+1+a8+a108\dfrac{{\dfrac{1}{{{a^5}}} + \dfrac{1}{{{a^4}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + 1 + {a^8} + {a^{10}}}}{8} \geqslant (1)18{\left( 1 \right)^{\dfrac{1}{8}}}
\Rightarrow 1a5+1a4+1a3+1a3+1a3+1+a8+a108\dfrac{{\dfrac{1}{{{a^5}}} + \dfrac{1}{{{a^4}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + 1 + {a^8} + {a^{10}}}}{8} \geqslant 11
1a5+1a4+1a3+1a3+1a3+1+a8+a108\Rightarrow \dfrac{1}{{{a^5}}} + \dfrac{1}{{{a^4}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + 1 + {a^8} + {a^{10}} \geqslant 8
a5+a4+3a3+1+a8+a108\Rightarrow {a^{ - 5}} + {a^{ - 4}} + 3{a^{ - 3}} + 1 + {a^8} + {a^{10}} \geqslant 8
Thus, the minimum value of the sum of real numbers a5,a4,3a3,1,a8,a10{a^{ - 5}},{a^{ - 4}},3{a^{ - 3}},1,{a^8},{a^{10}} with a>0a > 0 is 8.

Hence, option (C) is the correct answer.

Note: In this question, we break the 3a33{a^{ - 3}} into a3,a3,a3{a^{ - 3}},{a^{ - 3}},{a^{ - 3}} so that their multiplication gets easier and desired result can be obtained without any difficulty.
am=1am{a^{-m}}=\dfrac{1}{{a^m}}