Solveeit Logo

Question

Mathematics Question on Significant figures

The minimum value of the function f(x)=02extdtf(x)=\int\limits_0^2 e^{|x-t|} d t is :

A

2

B

2(e1)2(e-1)

C

2e12 e-1

D

e(e1)e(e-1)

Answer

2(e1)2(e-1)

Explanation

Solution

For x=0
f(x)=0?2?et-xdt=e-x(e2-1)
For 0<x<2
f(x)=0?x?ex-tdt+?x2?et-xdt=ex+e2-x-2
For x=2
f(x)=0?2?ex-tdt=ex-2(e2-1)
For x=0,f(x) is ? and x=2,f(x) is ?
? Minimum value of f(x) lies in x?(0,2)
Applying A.M=G.M,
minimum value of f(x) is 2(e-1)