Solveeit Logo

Question

Question: The minimum value of \[\left| {\sin x + \cos x + \tan x + \sec x + \cos ec x + \cot x} \right|\] is ...

The minimum value of sinx+cosx+tanx+secx+cosecx+cotx\left| {\sin x + \cos x + \tan x + \sec x + \cos ec x + \cot x} \right| is
A) 2212\sqrt 2 - 1
B) 22+12\sqrt 2 + 1
C) 21\sqrt 2 - 1
D) 2+1\sqrt 2 + 1

Explanation

Solution

Here, we will first convert all these functions in terms of the sine and cosine. Then we will add them together and simplify it further to find the minimum value of the sum. Trigonometric ratios are defined as the ratios of any two sides of a right angled triangle.

Formula Used:
We will use the following Formula:

  1. Trigonometric ratio:tanx=sinxcosx;secx=1cosx;cosecx=1sinx;cotx=cosxsinx\tan x = \dfrac{{\sin x}}{{\cos x}};\sec x = \dfrac{1}{{\cos x}};\cos ecx = \dfrac{1}{{\sin x}};\cot x = \dfrac{{\cos x}}{{\sin x}}
  2. Trigonometric identities: sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
  3. The square of the sum of two numbers is given by the formula: (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab
  4. The difference of square of two numbers is given by the algebraic identity (a2b2)=(a+b)(ab)\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)
  5. Trigonometric formula: sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B
  6. \left| x \right| = \left\\{ \begin{array}{l}x,{\rm{ }}if{\rm{ }}x \ge 0\\\ - x,{\rm{ }}if{\rm{ }}x < 0\end{array} \right.

Complete step by step solution:
We are given with a trigonometric function sinx+cosx+tanx+secx+cosecx+cotx\left| {\sin x + \cos x + \tan x + \sec x + \cos ecx + \cot x} \right|
Let sinx+cosx+tanx+secx+cosecx+cotx=y\left| {\sin x + \cos x + \tan x + \sec x + \cos ecx + \cot x} \right| = y
Now, we have to represent all the terms in terms of sine and cosine.
Now, substituting tanx=sinxcosx,secx=1cosx,cosecx=1sinx\tan x = \dfrac{{\sin x}}{{\cos x}},\sec x = \dfrac{1}{{\cos x}},\cos ecx = \dfrac{1}{{\sin x}} and cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}} in the given expression, we get
y=sinx+cosx+sinxcosx+1cosx+1sinx+cosxsinx\Rightarrow y = \sin x + \cos x + \dfrac{{\sin x}}{{\cos x}} + \dfrac{1}{{\cos x}} + \dfrac{1}{{\sin x}} + \dfrac{{\cos x}}{{\sin x}}

By grouping the terms and taking L.C.M., we get
y=sinx+cosx+sinxcosx+cosxsinx+1sinx+1cosx\Rightarrow y = \sin x + \cos x + \dfrac{{\sin x}}{{\cos x}} + \dfrac{{\cos x}}{{\sin x}} + \dfrac{1}{{\sin x}} + \dfrac{1}{{\cos x}}
y=sinx+cosx+sinxcosx×sinxsinx+cosxsinx×cosxcosx+1sinx×cosxcosx+1cosx×sinxsinx\Rightarrow y = \sin x + \cos x + \dfrac{{\sin x}}{{\cos x}} \times \dfrac{{\sin x}}{{\sin x}} + \dfrac{{\cos x}}{{\sin x}} \times \dfrac{{\cos x}}{{\cos x}} + \dfrac{1}{{\sin x}} \times \dfrac{{\cos x}}{{\cos x}} + \dfrac{1}{{\cos x}} \times \dfrac{{\sin x}}{{\sin x}}
Adding the like terms, we get
y=sinx+cosx+sin2x+cos2xcosxsinx+cosx+sinxcosxsinx\Rightarrow y = \sin x + \cos x + \dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{\cos x\sin x}} + \dfrac{{\cos x + \sin x}}{{\cos x\sin x}}
Now, by using the trigonometric identity sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1, we get
y=sinx+cosx+1+cosx+sinxcosxsinx\Rightarrow y = \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\cos x\sin x}} ………………………..(1)\left( 1 \right)
Using the algebraic identity (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab, we can write
(sinx+cosx)2=sin2x+cos2x+2sinxcosx{\left( {\sin x + \cos x} \right)^2} = {\sin ^2}x + {\cos ^2}x + 2\sin x\cos x
(sinx+cosx)2=1+2sinxcosx\Rightarrow {\left( {\sin x + \cos x} \right)^2} = 1 + 2\sin x\cos x
Rewriting the equation, we get
sinxcosx=(sinx+cosx)212\Rightarrow \sin x\cos x = \dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}
Substituting sinxcosx=(sinx+cosx)212\sin x\cos x = \dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2} in equation (1)\left( 1 \right), we get
y=sinx+cosx+1+cosx+sinx(sinx+cosx)212\Rightarrow y = \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}}
Substituting sinx+cosx=t\sin x + \cos x = t in the above equation, we get
sinx+cosx+1+cosx+sinx(sinx+cosx)212=t+1+tt212\Rightarrow \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}} = t + \dfrac{{1 + t}}{{\dfrac{{{t^2} - 1}}{2}}}
sinx+cosx+1+cosx+sinx(sinx+cosx)212=t+2(1+t)t21\Rightarrow \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}} = t + \dfrac{{2\left( {1 + t} \right)}}{{{t^2} - 1}}
The difference of square of two numbers is given by the algebraic identity (a2b2)=(a+b)(ab)\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)
sinx+cosx+1+cosx+sinx(sinx+cosx)212=t+2(1+t)(1+t)(t1)\Rightarrow \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}} = t + \dfrac{{2\left( {1 + t} \right)}}{{\left( {1 + t} \right)\left( {t - 1} \right)}}
sinx+cosx+1+cosx+sinx(sinx+cosx)212=t+2(t1)\Rightarrow \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}} = t + \dfrac{2}{{\left( {t - 1} \right)}}………………………..(2)\left( 2 \right)
We know that t=sinx+cosxt = \sin x + \cos x.
Multiplying and dividing by 2\sqrt 2 on both the sides, we get
t=22sinx+22cosx=2(12sinx+12cosx)\Rightarrow t = \dfrac{{\sqrt 2 }}{{\sqrt 2 }}\sin x + \dfrac{{\sqrt 2 }}{{\sqrt 2 }}\cos x = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin x + \dfrac{1}{{\sqrt 2 }}\cos x} \right)
t=2(cosπ4sinx+sinπ4cosx)\Rightarrow t = \sqrt 2 \left( {\cos \dfrac{\pi }{4}\sin x + \sin \dfrac{\pi }{4}\cos x} \right)
Now, by using trigonometric formula sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B, we get
t=2(sin(x+π4))\Rightarrow t = \sqrt 2 \left( {\sin \left( {x + \dfrac{\pi }{4}} \right)} \right)
Thus , by this identity, we will get 2t2- \sqrt 2 \le t \le \sqrt 2 .
Substituting y=sinx+cosx+tanx+secx+cosecx+cotx=t+2(t1)y = \left| {\sin x + \cos x + \tan x + \sec x + \cos ecx + \cot x} \right| = t + \dfrac{2}{{\left( {t - 1} \right)}}
y=t+2t1=t1+2t1+1\Rightarrow y = \left| {t + \dfrac{2}{{t - 1}}} \right| = \left| {t - 1 + \dfrac{2}{{t - 1}} + 1} \right|
Now, by using the property \left| x \right| = \left\\{ \begin{array}{l}x,{\rm{ }}if{\rm{ }}x \ge 0\\\ - x,{\rm{ }}if{\rm{ }}x < 0\end{array} \right. , we get
Now, considering 1<a<20<a11 < a < \sqrt 2 \Rightarrow 0 < a - 1in this case the value is positive.
y=t1+2t1+1\Rightarrow y = t - 1 + \dfrac{2}{{t - 1}} + 1
We know that Arithmetic mean\ge Geometric mean. Thus, we will get
t1+2t12(t1)×2t1\Rightarrow \dfrac{{t - 1 + \dfrac{2}{{t - 1}}}}{2} \ge \sqrt {\left( {t - 1} \right) \times \dfrac{2}{{t - 1}}}
t1+2t122t1+2t122\Rightarrow \dfrac{{t - 1 + \dfrac{2}{{t - 1}}}}{2} \ge \sqrt 2 \Rightarrow t - 1 + \dfrac{2}{{t - 1}} \ge 2\sqrt 2
t1+2t1+122+1\Rightarrow t - 1 + \dfrac{2}{{t - 1}} + 1 \ge 2\sqrt 2 + 1
Thus, we get
y22+1\Rightarrow y \ge 2\sqrt 2 + 1 which is positive…………………………………………………..(3)\left( 3 \right)
Now, considering 1<a<2a1<0 - 1 < a < \sqrt 2 \Rightarrow a - 1 < 0 in this case the value is negative
y=t1+2t1+1\Rightarrow y = t - 1 + \dfrac{2}{{t - 1}} + 1
y=1(1t+21t1)\Rightarrow y = \left| { - 1\left( {1 - t + \dfrac{2}{{1 - t}} - 1} \right)} \right|
y=1(1t+21t1)\Rightarrow y = \left| { - 1} \right|\left| {\left( {1 - t + \dfrac{2}{{1 - t}} - 1} \right)} \right|
y=(1t+21t1)\Rightarrow y = \left| {\left( {1 - t + \dfrac{2}{{1 - t}} - 1} \right)} \right|
We know that Arithmetic mean \ge Geometric mean. Thus, we will get
1t+21t2(1t)×21t\Rightarrow \dfrac{{1 - t + \dfrac{2}{{1 - t}}}}{2} \ge \sqrt {\left( {1 - t} \right) \times \dfrac{2}{{1 - t}}}
1t+21t221t+21t22\Rightarrow \dfrac{{1 - t + \dfrac{2}{{1 - t}}}}{2} \ge \sqrt 2 \Rightarrow 1 - t + \dfrac{2}{{1 - t}} \ge 2\sqrt 2
1t+21t1221\Rightarrow 1 - t + \dfrac{2}{{1 - t}} - 1 \ge 2\sqrt 2 - 1
Thus, we get
y221\Rightarrow y \ge 2\sqrt 2 - 1 which is positive………………………………………………(4)\left( 4 \right)
Since the value has to be minimum, from (3)\left( 3 \right) and (4)\left( 4 \right), we get 221<22+12\sqrt 2 - 1 < 2\sqrt 2 + 1
Thus the minimum value is 2212\sqrt 2 - 1

Therefore, the minimum value of sinx+cosx+tanx+secx+cosecx+cotx\left| {\sin x + \cos x + \tan x + \sec x + \cos ecx + \cot x} \right| is 2212\sqrt 2 - 1.

Note:
We can find the limits by using the trigonometric identity and values. So, it becomes important to remember all the basic identities and values. We have found the minimum value using the relation between arithmetic mean and geometric mean. Arithmetic mean or average is defined as the sum of numbers divided by the quantity of numbers, Geometric mean of two numbers is defined as the square root of their product. We should also remember that the Arithmetic mean should never be less than the geometric mean.