Solveeit Logo

Question

Mathematics Question on Application of derivatives

The minimum value of xlogx\frac{x}{\log \, x} is

A

ee

B

1e\frac{1}{e}

C

e2e^2

D

e3e^3

Answer

ee

Explanation

Solution

Let f(x)=xlogxf(x) = \frac{x}{\log \, x}
On differentiating w.r.t. xx, we get
f(x)=logx1(logx)2f'(x) = \frac{\log \, x - 1}{(\log \, x )^2}
For maxima and minima, put f(x)=0f'(x) = 0
logx1=0\log \, x - 1 = 0
x=e\Rightarrow \, x = e
Now ,
f(x)=(logx)21x(logx1)2logxx(logx)4f''(x)=\frac{(\log x)^{2} \cdot \frac{1}{x}-(\log x-1) \cdot \frac{2 \log x}{x}}{(\log x)^{4}}
f"(e)=1e01=1e>0\Rightarrow f" \left(e\right) = \frac{\frac{1}{e} - 0}{1} = \frac{1}{e} > 0
f(x)\therefore f(x) is minimum at x=ex = e.
Hence, minimum value of f (x) at x = e is
f(e)=eloge=ef\left(e\right) = \frac{e}{\log e } = e