Solveeit Logo

Question

Question: The minimum value of \(\cos\theta + \sin\theta\) is...

The minimum value of cosθ+sinθ\cos\theta + \sin\theta is

A

0

B

2- \sqrt{2}

C

1/21/2

D

2\sqrt{2}

Answer

2- \sqrt{2}

Explanation

Solution

Let f(x)=cosθ+sinθ=2cos(θπ4)f(x) = \cos\theta + \sin\theta = \sqrt{2}\cos\left( \theta - \frac{\pi}{4} \right)

Since 1cos(θπ4)1- 1 \leq \cos\left( \theta - \frac{\pi}{4} \right) \leq 1

22cos(θπ4)2- \sqrt{2} \leq \sqrt{2}\cos\left( \theta - \frac{\pi}{4} \right) \leq \sqrt{2}

Thus, the minimum value of f(x)f(x) is 2- \sqrt{2}.