Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

The minimum value of cosθ+sinθ+2sin2θ\cos\,\theta + \sin\,\theta+\frac{2}{\sin\,2\theta} for θ(0,π/2)\theta\,\in \left(0, \pi/2\right) is

A

2+22+\sqrt{2}

B

22

C

1+21+\sqrt{2}

D

222\sqrt{2}

Answer

2+22+\sqrt{2}

Explanation

Solution

Here, cosθ+sinθ+2sin2θ,θ(0,π2)\cos \theta+\sin \theta+\frac{2}{\sin 2 \theta}, \theta \in\left(0, \frac{\pi}{2}\right)
For minimum value, sin2θ\sin 2 \theta must be maximum.
2θ=π2\therefore 2 \theta=\frac{\pi}{2}
θ=π4\Rightarrow \theta=\frac{\pi}{4}
Hence, cosπ4+sinπ4+2sinπ2=2+2\cos \frac{\pi}{4}+\sin \frac{\pi}{4}+\frac{2}{\sin \frac{\pi}{2}}=\sqrt{2}+2