Question
Question: The minimum value of \( {\cos ^3}x + {\cos ^3}\left( {{{120}^ \circ } + x} \right) + {\cos ^3}\left(...
The minimum value of cos3x+cos3(120∘+x)+cos3(120∘−x) is
Solution
Hint : In the given trigonometric expression we have three cube powered cosine functions. Cube powered cosine functions are found in the formula of cos3θ . So first write the formula of cos3θ and write all the cube powered cosines in terms of cos3θ . After this, you will get an idea on how to proceed further. Solve the further referring to the below mentioned formulas.
Formulas used:
1. cos3θ=4cos3θ−3cosθ
2. cos(360∘+θ)=cosθ
3. cos(−θ)=cosθ
4. cosA+cosB=2cos(2A+B)cos(2A−B)
5. 2cosAcosB=cos(A+B)+cos(A−B)
Complete step by step solution:
We are given to the minimum value of cos3x+cos3(120∘+x)+cos3(120∘−x)
We know that the value cos3θ=4cos3θ−3cosθ
This means cos3x=4cos3x−3cosx
Therefore, cos3x=41(cos3x+3cosx)
On replacing cos3x in cos3x+cos3(120∘+x)+cos3(120∘−x) with its above obtained formula, we get
⇒41(cos3x+3cosx)+41[cos3(120∘+x)+3cos(120∘+x)]+41[cos3(120∘−x)+3cos(120∘−x)]
⇒41[cos3x+3cosx+cos(360∘+3x)+3cos(120∘+x)+cos(360∘−3x)+3cos(120∘−x)]
We know that cos(360∘+θ)=cosθ , so cos(360∘+3x)=cos3x and cos(360∘−3x)=cos(−3x)
Substituting the above value we get
⇒41[cos3x+3cosx+cos3x+3cos(120∘+x)+cos(−3x)+3cos(120∘−x)]
We know that cos(−θ)=cosθ , so cos(−3x)=cos3x
This gives,
⇒41[cos3x+3cosx+cos3x+3cos(120∘+x)+cos3x+3cos(120∘−x)]
⇒41[3cos3x+3cosx+3cos(120∘+x)+3cos(120∘−x)]
Taking out 3 common, we get
⇒41×3[cos3x+cosx+cos(120∘+x)+cos(120∘−x)]
⇒43[cos3x+cosx+cos(120∘+x)+cos(120∘−x)]
As we can see cos3x+cosx is in the form of cosA+cosB , where A is 3x and B is x.
We know that cosA+cosB=2cos(2A+B)cos(2A−B)
Therefore, cos3x+cosx=2cos(23x+x)cos(23x−x)=2cos2xcosx
In cos(120∘+x)+cos(120∘−x) , A is (120∘+x) and B is (120∘−x)
cos(120∘+x)+cos(120∘−x)=2cos(2120∘+x+120∘−x)cos(2120∘+x−(120∘−x))=2cos120∘cosx
Substituting the obtained values, we get
⇒43(2cos2xcosx+2cos120∘cosx)
cos120∘=−21
⇒43(2cos2xcosx+2(2−1)cosx)=43(2cos2xcosx−cosx)
We know that 2cosAcosB=cos(A+B)+cos(A−B)
This gives us 2cos2xcosx=cos(2x+x)+cos(2x−x)=cos3x+cosx
⇒43(cos3x+cosx−cosx)=43(cos3x)
Cosine function ranges from -1 to +1. So the minimum value of cosθ is -1, this means the minimum value of cos3x is -1.
Therefore, the minimum value of 43(cos3x) is ⇒43(−1)=4−3
The minimum value of cos3x+cos3(120∘+x)+cos3(120∘−x) is 4−3
So, the correct answer is “ 4−3”.
Note : Sine, Cosine and tangent functions are periodic functions; which means their values get repeated after a certain interval. Sine values and cosine values repeat after every 360 degrees (2π radians) whereas tangent values get repeated after every 180 degrees (π radians). Be careful while writing the formulas. A little replacement of sine with cosine will change the complete answer. So please be careful.