Solveeit Logo

Question

Question: The minimum value of \( {\cos ^3}x + {\cos ^3}\left( {{{120}^ \circ } + x} \right) + {\cos ^3}\left(...

The minimum value of cos3x+cos3(120+x)+cos3(120x){\cos ^3}x + {\cos ^3}\left( {{{120}^ \circ } + x} \right) + {\cos ^3}\left( {{{120}^ \circ } - x} \right) is

Explanation

Solution

Hint : In the given trigonometric expression we have three cube powered cosine functions. Cube powered cosine functions are found in the formula of cos3θ\cos 3\theta . So first write the formula of cos3θ\cos 3\theta and write all the cube powered cosines in terms of cos3θ\cos 3\theta . After this, you will get an idea on how to proceed further. Solve the further referring to the below mentioned formulas.
Formulas used:
1. cos3θ=4cos3θ3cosθ\cos 3\theta = 4{\cos ^3}\theta - 3\cos \theta
2. cos(360+θ)=cosθ\cos \left( {{{360}^ \circ } + \theta } \right) = \cos \theta
3. cos(θ)=cosθ\cos \left( { - \theta } \right) = \cos \theta
4. cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)
5. 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)

Complete step by step solution:
We are given to the minimum value of cos3x+cos3(120+x)+cos3(120x){\cos ^3}x + {\cos ^3}\left( {{{120}^ \circ } + x} \right) + {\cos ^3}\left( {{{120}^ \circ } - x} \right)
We know that the value cos3θ=4cos3θ3cosθ\cos 3\theta = 4{\cos ^3}\theta - 3\cos \theta
This means cos3x=4cos3x3cosx\cos 3x = 4{\cos ^3}x - 3\cos x
Therefore, cos3x=14(cos3x+3cosx){\cos ^3}x = \dfrac{1}{4}\left( {\cos 3x + 3\cos x} \right)
On replacing cos3x{\cos ^3}x in cos3x+cos3(120+x)+cos3(120x){\cos ^3}x + {\cos ^3}\left( {{{120}^ \circ } + x} \right) + {\cos ^3}\left( {{{120}^ \circ } - x} \right) with its above obtained formula, we get
14(cos3x+3cosx)+14[cos3(120+x)+3cos(120+x)]+14[cos3(120x)+3cos(120x)]\Rightarrow \dfrac{1}{4}\left( {\cos 3x + 3\cos x} \right) + \dfrac{1}{4}\left[ {\cos 3\left( {{{120}^ \circ } + x} \right) + 3\cos \left( {{{120}^ \circ } + x} \right)} \right] + \dfrac{1}{4}\left[ {\cos 3\left( {{{120}^ \circ } - x} \right) + 3\cos \left( {{{120}^ \circ } - x} \right)} \right]
14[cos3x+3cosx+cos(360+3x)+3cos(120+x)+cos(3603x)+3cos(120x)]\Rightarrow \dfrac{1}{4}\left[ {\cos 3x + 3\cos x + \cos \left( {{{360}^ \circ } + 3x} \right) + 3\cos \left( {{{120}^ \circ } + x} \right) + \cos \left( {{{360}^ \circ } - 3x} \right) + 3\cos \left( {{{120}^ \circ } - x} \right)} \right]
We know that cos(360+θ)=cosθ\cos \left( {{{360}^ \circ } + \theta } \right) = \cos \theta , so cos(360+3x)=cos3x\cos \left( {{{360}^ \circ } + 3x} \right) = \cos 3x and cos(3603x)=cos(3x)\cos \left( {{{360}^ \circ } - 3x} \right) = \cos \left( { - 3x} \right)
Substituting the above value we get
14[cos3x+3cosx+cos3x+3cos(120+x)+cos(3x)+3cos(120x)]\Rightarrow \dfrac{1}{4}\left[ {\cos 3x + 3\cos x + \cos 3x + 3\cos \left( {{{120}^ \circ } + x} \right) + \cos \left( { - 3x} \right) + 3\cos \left( {{{120}^ \circ } - x} \right)} \right]
We know that cos(θ)=cosθ\cos \left( { - \theta } \right) = \cos \theta , so cos(3x)=cos3x\cos \left( { - 3x} \right) = \cos 3x
This gives,
14[cos3x+3cosx+cos3x+3cos(120+x)+cos3x+3cos(120x)]\Rightarrow \dfrac{1}{4}\left[ {\cos 3x + 3\cos x + \cos 3x + 3\cos \left( {{{120}^ \circ } + x} \right) + \cos 3x + 3\cos \left( {{{120}^ \circ } - x} \right)} \right]
14[3cos3x+3cosx+3cos(120+x)+3cos(120x)]\Rightarrow \dfrac{1}{4}\left[ {3\cos 3x + 3\cos x + 3\cos \left( {{{120}^ \circ } + x} \right) + 3\cos \left( {{{120}^ \circ } - x} \right)} \right]
Taking out 3 common, we get
1×34[cos3x+cosx+cos(120+x)+cos(120x)]\Rightarrow \dfrac{{1 \times 3}}{4}\left[ {\cos 3x + \cos x + \cos \left( {{{120}^ \circ } + x} \right) + \cos \left( {{{120}^ \circ } - x} \right)} \right]
34[cos3x+cosx+cos(120+x)+cos(120x)]\Rightarrow \dfrac{3}{4}\left[ {\cos 3x + \cos x + \cos \left( {{{120}^ \circ } + x} \right) + \cos \left( {{{120}^ \circ } - x} \right)} \right]
As we can see cos3x+cosx\cos 3x + \cos x is in the form of cosA+cosB\cos A + \cos B , where A is 3x and B is x.
We know that cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)
Therefore, cos3x+cosx=2cos(3x+x2)cos(3xx2)=2cos2xcosx\cos 3x + \cos x = 2\cos \left( {\dfrac{{3x + x}}{2}} \right)\cos \left( {\dfrac{{3x - x}}{2}} \right) = 2\cos 2x\cos x
In cos(120+x)+cos(120x)\cos \left( {{{120}^ \circ } + x} \right) + \cos \left( {{{120}^ \circ } - x} \right) , A is (120+x)\left( {{{120}^ \circ } + x} \right) and B is (120x)\left( {{{120}^ \circ } - x} \right)
cos(120+x)+cos(120x)=2cos(120+x+120x2)cos(120+x(120x)2)=2cos120cosx\cos \left( {{{120}^ \circ } + x} \right) + \cos \left( {{{120}^ \circ } - x} \right) = 2\cos \left( {\dfrac{{{{120}^ \circ } + x + {{120}^ \circ } - x}}{2}} \right)\cos \left( {\dfrac{{{{120}^ \circ } + x - \left( {{{120}^ \circ } - x} \right)}}{2}} \right) = 2\cos {120^ \circ }\cos x
Substituting the obtained values, we get
34(2cos2xcosx+2cos120cosx)\Rightarrow \dfrac{3}{4}\left( {2\cos 2x\cos x + 2\cos {{120}^ \circ }\cos x} \right)
cos120=12\cos {120^ \circ } = - \dfrac{1}{2}
34(2cos2xcosx+2(12)cosx)=34(2cos2xcosxcosx)\Rightarrow \dfrac{3}{4}\left( {2\cos 2x\cos x + 2\left( {\dfrac{{ - 1}}{2}} \right)\cos x} \right) = \dfrac{3}{4}\left( {2\cos 2x\cos x - \cos x} \right)
We know that 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)
This gives us 2cos2xcosx=cos(2x+x)+cos(2xx)=cos3x+cosx2\cos 2x\cos x = \cos \left( {2x + x} \right) + \cos \left( {2x - x} \right) = \cos 3x + \cos x
34(cos3x+cosxcosx)=34(cos3x)\Rightarrow \dfrac{3}{4}\left( {\cos 3x + \cos x - \cos x} \right) = \dfrac{3}{4}\left( {\cos 3x} \right)
Cosine function ranges from -1 to +1. So the minimum value of cosθ\cos \theta is -1, this means the minimum value of cos3x\cos 3x is -1.
Therefore, the minimum value of 34(cos3x)\dfrac{3}{4}\left( {\cos 3x} \right) is 34(1)=34\Rightarrow \dfrac{3}{4}\left( { - 1} \right) = \dfrac{{ - 3}}{4}
The minimum value of cos3x+cos3(120+x)+cos3(120x){\cos ^3}x + {\cos ^3}\left( {{{120}^ \circ } + x} \right) + {\cos ^3}\left( {{{120}^ \circ } - x} \right) is 34\dfrac{{ - 3}}{4}
So, the correct answer is “ 34\dfrac{{ - 3}}{4}”.

Note : Sine, Cosine and tangent functions are periodic functions; which means their values get repeated after a certain interval. Sine values and cosine values repeat after every 360 degrees (2π radians) whereas tangent values get repeated after every 180 degrees (π radians). Be careful while writing the formulas. A little replacement of sine with cosine will change the complete answer. So please be careful.