Question
Question: The minimum value of \(a\sec x+b\operatorname{cosec}x\), \(0 < a,b < 1\), \(0 < x < \dfrac{\pi }{2}\...
The minimum value of asecx+bcosecx, 0<a,b<1, 0<x<2π.
(a) a+b,
(b) a32+b32,
(c) a32+b3223,
(d) None of these.
Solution
We start solving the problem by assigning a variable to the function asecx+bcosecx. We then differentiate this function with respect to x and equate it to 0 to get the value of x. We differentiate the function again and substitute the obtained value of x to check whether the function is minimum or maximum at that point. We then substitute this value in function to get the minimum value of function.
Complete step-by-step answer :
According to the problem, we have to find the minimum value of asecx+bcosecx, 0<a<b, 0<x<2π.
Let us assume asecx+bcosecx, 0<a<b, 0Weknowthattofindtheminimumvalueoff\left( x \right),wedifferentiateitwithrespecttoxandequatesitto0togetthevalueofx.Wethenfindthefunction{{f}^{''}}\left( x \right)andsubstitutetheobtainedvaluetocheckwhetherthevalueispositivetogetmaximaatthatvalueofx.So,letusdifferentiatef\left( x \right)=a\sec x+b\operatorname{cosec}xwithrespecttoxonbothsides.\Rightarrow \dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{d}{dx}\left( a\sec x+b\operatorname{cosec}x \right)−−−(1).Weknowthat\dfrac{d}{dx}\left( ag\left( x \right)+bh\left( x \right) \right)=a\dfrac{d}{dx}\left( g\left( x \right) \right)+b\dfrac{d}{dx}\left( h\left( x \right) \right).Weusethisinequation(1).\Rightarrow \dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{d}{dx}\left( a\sec x \right)+\dfrac{d}{dx}\left( b\operatorname{cosec}x \right).
$$\Rightarrow \dfrac{d}{dx}\left( f\left( x \right) \right)=a\dfrac{d}{dx}\left( \sec x \right)+b\dfrac{d}{dx}\left( \operatorname{cosec}x \right)$$ ---(2).
We know that \dfrac{d}{dx}\left( \sec x \right)=\sec x\tan xand\dfrac{d}{dx}\left( \operatorname{cosec}x \right)=-\operatorname{cosec}x\cot x. We use these results in equation (2).
$$\Rightarrow \dfrac{d}{dx}\left( f\left( x \right) \right)=a\left( \sec x.\tan x \right)+b\left( -\operatorname{cosec}x.\cot x \right)$$.
\Rightarrow {{f}^{'}}\left( x \right)=a\sec x.\tan x-b\operatorname{cosec}x\cot x−−−(3).Tofindthevalueofxatwhichtheminimumoccurs,wetake{{f}^{'}}\left( x \right)=0.\Rightarrow a\sec x.\tan x-b\operatorname{cosec}x\cot x=0.\Rightarrow a\dfrac{1}{\cos x}.\dfrac{\sin x}{\cos x}-b\dfrac{1}{\sin x}\dfrac{\cos x}{\sin x}=0.\Rightarrow a\dfrac{\sin x}{{{\cos }^{2}}x}-b\dfrac{\cos x}{{{\sin }^{2}}x}=0.\Rightarrow a\dfrac{\sin x}{{{\cos }^{2}}x}=b\dfrac{\cos x}{{{\sin }^{2}}x}.\Rightarrow \dfrac{\sin x}{{{\cos }^{2}}x}\times \dfrac{{{\sin }^{2}}x}{\cos x}=\dfrac{b}{a}.\Rightarrow \dfrac{{{\sin }^{3}}x}{{{\cos }^{3}}x}=\dfrac{b}{a}.
$$\Rightarrow {{\left( \dfrac{\sin x}{\cos x} \right)}^{3}}=\dfrac{b}{a}$$.
$$\Rightarrow {{\left( \tan x \right)}^{3}}=\dfrac{b}{a}$$.
$$\Rightarrow \tan x={{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}$$ ---(4).
Let us differentiate equation (3) with respect to x again.
\Rightarrow \dfrac{d}{dx}\left( {{f}^{'}}\left( x \right) \right)=\dfrac{d}{dx}\left( a\sec x.\tan x-b\operatorname{cosec}x\cot x \right).\Rightarrow \dfrac{d}{dx}\left( {{f}^{'}}\left( x \right) \right)=\dfrac{d}{dx}\left( a\sec x.\tan x \right)-\dfrac{d}{dx}\left( b\operatorname{cosec}x\cot x \right).Weknowthatthedifferentiationofthefunctionuvisdefinedas\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}.\Rightarrow \dfrac{d}{dx}\left( {{f}^{'}}\left( x \right) \right)=a\sec x\dfrac{d}{dx}\left( \tan x \right)+a\tan x\dfrac{d}{dx}\left( \sec x \right)-b\operatorname{cosec}x\dfrac{d}{dx}\left( \cot x \right)-b\cot x\dfrac{d}{dx}\left( \operatorname{cosec}x \right).Weknowthat\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}xand\dfrac{d}{dx}\left( \cot x \right)=-{{\operatorname{cosec}}^{2}}x.\Rightarrow {{f}^{''}}\left( x \right)=a\sec x\left( {{\sec }^{2}}x \right)+a\tan x\left( \sec x.\tan x \right)-b\operatorname{cosec}x\left( -{{\operatorname{cosec}}^{2}}x \right)-b\cot x\left( -\operatorname{cosec}x\cot x \right).\Rightarrow {{f}^{''}}\left( x \right)=a{{\sec }^{3}}x+a\sec x.{{\tan }^{2}}x+b{{\operatorname{cosec}}^{3}}x+b\operatorname{cosec}x{{\cot }^{2}}x---(5).
From equation (4), we have $$\tan x={{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}$$.
$$\Rightarrow \cot x=\dfrac{1}{\tan x}=\dfrac{1}{{{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}}$$.
$$\Rightarrow \cot x={{\left( \dfrac{a}{b} \right)}^{\dfrac{1}{3}}}$$.
We have{{\sec }^{2}}x=1+{{\tan }^{2}}x.\Rightarrow {{\sec }^{2}}x=1+{{\left( {{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} \right)}^{2}}.\Rightarrow {{\sec }^{2}}x=1+{{\left( \dfrac{b}{a} \right)}^{\dfrac{2}{3}}}.\Rightarrow {{\sec }^{2}}x=1+\dfrac{{{b}^{\dfrac{2}{3}}}}{{{a}^{\dfrac{2}{3}}}}.\Rightarrow {{\sec }^{2}}x=\dfrac{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}}{{{a}^{\dfrac{2}{3}}}}.\Rightarrow \sec x=\dfrac{\sqrt{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}}}{{{a}^{\dfrac{1}{3}}}}.Wehave{{\operatorname{cosec}}^{2}}x=1+{{\cot }^{2}}x.\Rightarrow {{\operatorname{cosec}}^{2}}x=1+{{\left( {{\left( \dfrac{a}{b} \right)}^{\dfrac{1}{3}}} \right)}^{2}}.\Rightarrow {{\operatorname{cosec}}^{2}}x=1+{{\left( \dfrac{a}{b} \right)}^{\dfrac{2}{3}}}.\Rightarrow {{\operatorname{cosec}}^{2}}x=1+\dfrac{{{a}^{\dfrac{2}{3}}}}{{{b}^{\dfrac{2}{3}}}}.\Rightarrow {{\operatorname{cosec}}^{2}}x=\dfrac{{{b}^{\dfrac{2}{3}}}+{{a}^{\dfrac{2}{3}}}}{{{b}^{\dfrac{2}{3}}}}.\Rightarrow \operatorname{cosec}x=\dfrac{\sqrt{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}}}{{{b}^{\dfrac{1}{3}}}}.Wesubstituteallthesevaluesinequation(5).\Rightarrow {{f}^{''}}\left( x \right)=a{{\left( \dfrac{\sqrt{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}}}{{{a}^{\dfrac{1}{3}}}} \right)}^{3}}+a\left( \dfrac{\sqrt{{{b}^{\dfrac{2}{3}}}+{{a}^{\dfrac{2}{3}}}}}{{{a}^{\dfrac{1}{3}}}} \right).{{\left( {{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} \right)}^{2}}+b{{\left( \dfrac{\sqrt{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}}}{{{b}^{\dfrac{1}{3}}}} \right)}^{3}}+b\left( \dfrac{\sqrt{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}}}{{{b}^{\dfrac{1}{3}}}} \right){{\left( {{\left( \dfrac{a}{b} \right)}^{\dfrac{1}{3}}} \right)}^{2}}.\Rightarrow {{f}^{''}}\left( x \right)=\dfrac{a{{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{3}{2}}}}{a}+\dfrac{a{{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{1}{2}}}}{{{a}^{\dfrac{1}{3}}}}\times \left( \dfrac{{{b}^{\dfrac{2}{3}}}}{{{a}^{\dfrac{2}{3}}}} \right)+\dfrac{b{{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{3}{2}}}}{b}+\dfrac{b{{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{1}{2}}}}{{{b}^{\dfrac{1}{3}}}}\times \left( \dfrac{{{a}^{\dfrac{2}{3}}}}{{{b}^{\dfrac{2}{3}}}} \right).
$$\Rightarrow {{f}^{''}}\left( x \right)={{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{3}{2}}}+{{b}^{\dfrac{2}{3}}}{{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{1}{2}}}+{{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{3}{2}}}+{{a}^{\dfrac{2}{3}}}{{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{1}{2}}}$$.
Since the values of a and b are positive and {{f}^{''}}\left( x \right)involvesonlyadditionandsquarerootswhichmakesthevaluepositive.So,weget{{f}^{''}}\left( x \right)>0.Whichmeansthatthevaluehasminimumwhen\tan xisequalto{{\left( \dfrac{a}{b} \right)}^{\dfrac{1}{3}}}.So,letusfindtheminimumvalueoff\left( x \right)=a\sec x+b\operatorname{cosec}x.Wehaveminimumvalueasf\left( x \right)=a\left( \dfrac{\sqrt{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}}}{{{a}^{\dfrac{1}{3}}}} \right)+b\left( \dfrac{\sqrt{{{b}^{\dfrac{2}{3}}}+{{a}^{\dfrac{2}{3}}}}}{{{b}^{\dfrac{1}{3}}}} \right).\Rightarrow f\left( x \right)={{a}^{\dfrac{2}{3}}}\sqrt{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}}+{{b}^{\dfrac{2}{3}}}\sqrt{{{b}^{\dfrac{2}{3}}}+{{a}^{\dfrac{2}{3}}}}.\Rightarrow f\left( x \right)=\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)\times \left( \sqrt{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}} \right).\Rightarrow f\left( x \right)={{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{1+\dfrac{1}{2}}}.\Rightarrow f\left( x \right)={{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{3}{2}}}.Wehavefoundtheminimumvalueofa\sec x+b\operatorname{cosec}x,0∴ The minimum value of asecx+bcosecx, 0<a<b, 0<x<2π is a32+b3223.
The correct option for the given problem is (c).
Note : We should know that the value of x we obtained from f′(x)=0 may not always give a minimum or maxima. So, we need to check the value of f′′(x) in order to check whether that gives maxima or minima. If we get f′′(x)<0, then x has local maxima and if we get f′′(x)>0, then x has local minima. If f′′(x)=0, then we need to differentiate again and follow the same process. If we get only one value of x while solving f′(x)=0, it may give us the value of absolute minimum or maximum.