Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

The minimum value of 3cosx+4sinx+83cosx + 4sinx + 8 is

A

55

B

99

C

77

D

33

Answer

33

Explanation

Solution

We know that, 32+423cosx+4sinx32+42-\sqrt{3^{2}+4^{2}}\le3\,cos\,x+4\,sin\,x\,\le \sqrt{3^{2}+4^{2}} 253cosx+4sinx25\Rightarrow -\sqrt{25} \le3\,cosx+4sinx \, \le\,\sqrt{25} 53cosx+4sinx5\Rightarrow -5 \le3cosx+4sinx \le 5 5+83cosx+4sinx+85+8\Rightarrow -5+8 \le3cosx+4sinx+8 \le 5+8 33cosx+4sinx+813\Rightarrow 3 \le3cosx+4sinx+8 \le 13 Hence, minimum value of given expression is 33.