Solveeit Logo

Question

Mathematics Question on Maxima and Minima

The minimum value of 2x+3y,2x + 3y, when xy=6,xy = 6, is

A

9

B

12

C

8

D

6

Answer

12

Explanation

Solution

Let f(x)=2x+3yf ( x )=2 x +3 y
f(x)=2x+18xf ( x )=2 x +\frac{18}{ x }
(xy=6(\because xy =6 given ))
On differentiating, we get
fx=218x2f' x=2-\frac{18}{x^{2}}
Put f(x)=0f '( x )=0 for maximum or minima.
0=218x2\Rightarrow 0=2-\frac{18}{x^{2}}
x=±3\Rightarrow x=\pm 3
And fx=36x3f '' x =\frac{36}{ x ^{3}}
f3=3633>0\Rightarrow f '' 3=\frac{36}{3^{3}}>0
\therefore At x=3x =3, If xx is minimum.
The minimum value is
f(3)=2(3)+3(2)=12f(3)=2(3)+3(2)=12